
Tracezip: Efficient Distributed Tracing via Trace Compression

ZHUANGBIN CHEN, School of Software Engineering, Sun Yat-sen University, China
JUNSONG PU, Beijing University of Posts and Telecommunication, China
ZIBIN ZHENG

∗
, School of Software Engineering, Sun Yat-sen University, China

Distributed tracing serves as a fundamental building block in the monitoring and testing of cloud service
systems. To reduce computational and storage overheads, the de facto practice is to capture fewer traces via
sampling. However, existing work faces a trade-off between the completeness of tracing and system overhead.
On one hand, head-based sampling indiscriminately selects requests to trace when they enter the system, which
may miss critical events. On the other hand, tail-based sampling traces all requests and selectively persist the
edge-case traces, which entails the overheads related to trace collection and ingestion. Taking a different path,
in this paper we propose Tracezip to enhance the efficiency of distributed tracing via trace compression. Our
key insight is that there exists significant redundancy among traces, which results in repetitive transmission
of identical data between the services and backend. We design a new data structure named Span Retrieval
Tree (SRT) that continuously encapsulates such redundancy at the service side and transforms trace spans
into a lightweight form. At the backend, the full traces can be seamlessly reconstructed by retrieving the
common data already delivered by previous spans. Tracezip includes a series of strategies to optimize the
structure of SRT and a differential update mechanism to efficiently synchronize SRT between services and
backend. Our evaluation on microservices benchmarks, popular cloud service systems, and production trace
data demonstrate that Tracezip can achieve substantial performance gains in trace collection, with negligible
overhead. We have implemented Tracezip inside OpenTelemetry Collector, making it compatible with existing
tracing APIs.

CCS Concepts: • Computer systems organization→ Cloud computing; Reliability;Maintainability
and maintenance; Redundancy; • Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: Distributed tracing, Trace compression, Cloud computing, System moni-
toring

ACM Reference Format:
Zhuangbin Chen, Junsong Pu, and Zibin Zheng. 2024. Tracezip: Efficient Distributed Tracing via Trace
Compression. In Proceedings of The ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA ’25). ACM, New York, NY, USA, 23 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In modern cloud systems, the adoption of loosely coupled designs for applications and services has
marked a significant paradigm shift in software architecture. While such modular design brings the
benefits of scalability and operational flexibility, it also complicates different aspects of software

∗Zibin Zheng is the corresponding author.

Authors’ addresses: Zhuangbin Chen, School of Software Engineering, Sun Yat-sen University, Zhuhai, China, chenzhb36@
mail.sysu.edu.cn; Junsong Pu, Beijing University of Posts and Telecommunication, Beijing, China, angrychow@bupt.edu.cn;
Zibin Zheng, School of Software Engineering, Sun Yat-sen University, Zhuhai, China, zhzibin@mail.sysu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’25, June 25–28, 2025, Trondheim, Norway
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0001-5158-6716
HTTPS://ORCID.ORG/0009-0002-8309-1384
HTTPS://ORCID.ORG/0000-0002-7878-4330
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-5158-6716
https://orcid.org/0009-0002-8309-1384
https://orcid.org/0000-0002-7878-4330
https://doi.org/XXXXXXX.XXXXXXX

2 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

development and maintenance, including testing, debugging and diagnosing. This can be largely
attributed to the cascading effect of failures [5, 9], i.e., a single failure in one service can quickly
propagate to other interconnected services. As such, distributed tracing has emerged as an essential
reliability management solution in cloud systems. This is primarily due to its ability to provide a
comprehensive and granular view of the interactions between services, allowing for the precise
identification of where and how failures occur and spread.

In cloud service systems, unusual and edge-case system behaviors, such as tail latency, are rare
by definition. To achieve high coverage of outlier system events, it is necessary to trace all requests.
In production environments, this may result in substantial trace data, incurring significant overhead
and costs related to trace generation, collection, and ingestion. To mitigate this problem, various
trace sampling techniques have been proposed, which can be categorized into two main types, i.e.,
head-based sampling [48] and tail-based sampling [4, 14, 17, 48]. Head-based sampling uniformly
collects traces at random based on a small sampling rate (e.g., 1% [20, 22, 48]). The sampling decision
is made before request execution, and only the sampled requests will be traced. On the other hand,
tail-based sampling captures traces for all requests, and decides whether to retain a trace based
on the execution details such as latency and HTTP status code. In this regard, many machine
learning techniques have been applied to automatically select informative and uncommon traces.
However, given the inherent unpredictability of the true value of traces, trace sampling struggles to
capture the full spectrum of critical information necessary for effective software testing and failure
diagnosis.
In this paper, we propose Tracezip, an online and scalable solution to address the overhead of

distributed tracing by trace compression. Tracezip transforms spans into a concise representation
upon their generation at the service side, which can be seamlessly decompressed at the backend side.
This strategy significantly reduces the volume of data that needs to be transmitted. We discuss two
possible solutions for this end. The first is offline log compression [24, 37, 42, 43], which condenses
log data after it has been aggregated at the backend for long-term persistence. As the primary goal
is to save storage space, this approach often involves sophisticated algorithms which fail to meet
the real-time requirements for trace collection. Moreover, it often requires processing the entire log
dataset to achieve the optimal performance. In our scenario, online learning capability is crucial as
traces are continuously generated in a stream. General-purpose compression algorithms (e.g., gzip
and bzip) may also seem an out-of-box solution. However, they are designed for encoding arbitrary
binary sequences, which can only exploit redundant information within a short sliding window
(e.g., 32KB in gzip’s Deflate algorithm).

To pursue more effective compression, Tracezip harnesses the global redundancy inherent in
the structures of trace spans. Specifically, we design a new data structure, Span Retrieval Tree (SRT),
based on the principles of prefix trees, which is able to continuously extract the set of key-value
pairs commonly shared across spans. The SRT, when synchronized between services and backend,
serves as a reference mechanism to retrieve the identical data that have been previously transmitted
by other spans. To manage computational and space complexity, Tracezip constantly restructures
SRT into its most compact form and employs mapping techniques to further reduce its size. We
also propose a differential update mechanism to effectively synchronize SRT between services and
backend. Tracezip is orthogonal to trace sampling methods and can work with log compression
techniques once trace data have been efficiently transmitted to the backend.

We have implemented Tracezip inside OpenTelemetry Collector [34], one of the most popular
tracing frameworks, making it compatible with existing tracing APIs. We deploy Tracezip to collect
traces for an open-source microservices benchmark and six application backend components in
cloud environments, i.e., gRPC, Apache Kafka, Servlet, MySQL, Redis, MongoDB. We also evaluate
the compression performance of Tracezip on Alibaba production traces. The experimental results

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 3

show that Tracezip offers around 10%∼45% performance gain when working in conjunction with
traditional compression schemes, i.e., gzip, bzip2, lzma. Moreover, Tracezip demonstrates negligible
space overhead (i.e., several megabytes) and high efficiency.

The major contributions of this work are as follows:
• We propose Tracezip, the first online trace compression system by leveraging the inherent
redundancy in trace span data. This information is captured by a new data structure Span
Retrieval Tree (SRT). By sharing SRT between services and tracing backend, we can eliminate
the redundancy associated with the repetitive transmission of identical data across multiple
spans.

• We have implemented Tracezip inside OpenTelemetry Collector with a series of optimization
strategies for SRT restructuring and synchronization. Experiments on both open-source
systems and production trace dataset demonstrate that Tracezip can effectively compress
traces with MB-scale space overhead and superior efficiency. The implementation and data
of Tracezip are publicly available∗.

The remainder of the paper is organized as follows. Section 2 introduces the background of
distributed tracing and the motivation of this work. Section 3 and 4 describes the proposedmethodol-
ogy and system implementation. Section 5 presents the experiments and results. Section 7 discusses
the related work. Finally, Section 8 concludes this work.

2 BACKGROUND ANDMOTIVATION
2.1 Distributed Tracing
Distributed tracing provides a detailed end-to-end view of requests as they traverse interconnected
and multi-tier cloud service systems. The building blocks of a trace are called spans. They represent
the individual slices of work performed across different machines and components that are visited
by the request. Each span encapsulates various attributes, including span name, parent span ID,
span ID, start/end timestamps, events, etc. This information enables the correlation and analysis of
the request’s lifecycle.
Figure 1 illustrates a typical procedure [30, 48] of tracking requests in modern distributed

tracing frameworks, such as Jaeger [19] and Zipkin [54]. Upon the arrival of a new request to the
application, the tracing framework assigns it a unique trace_id (➀). However, not all requests will
actually be traced, which is indicated by a flag, sampled. Both trace_id and sampled will then
be propagated along the request at the application level, which is important for the completeness
and coherence of a trace. If sampled is set, each component (e.g., a microservice instance) that
handles the request will generate trace data (➁), i.e., a span, using the tracing framework’s client
library (e.g., OpenTelemetry). The places that emit spans are called a tracepoint, and there could be
multiple tracepoints serving different requests or different operations within a single request. The
framework’s client library then enqueues, serializes, and transmits trace spans (➂) to its centralized
backend collection infrastructure, or simply backend. The backend is responsible for continuously
receiving (➃), processing (➄), and storing (➅) trace data. Based on the trace_id, parent_span_id,
and span_id, the backend can assemble spans that were dispersed across different components
into a single coherent trace.
Given the details provided by these spans, operators can closely monitor and understand the

impact that one component may have on the others. This makes trace data particularly useful for
troubleshooting cross-component problems in large distributed systems. However, traces can be
produced at high volume, incurring significant network, compute, and storage costs. In production
scenarios, Google is estimated to generate approximately 1,000 TB of raw traces on a daily basis.

∗https://github.com/OpsPAI/TraceZip

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://github.com/OpsPAI/TraceZip

4 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

!

Backend Trace
Collectors

Frontend
Monitoring

Span
Reporting

1

2 3
4

5

6

Fig. 1. A Typical Procedure of Distributed Tracing

Netflix needs to manage more than 2 billions of daily requests. To mitigate overheads, existing
tracing frameworks often apply head-based sampling to trace only a small fraction of requests by
setting the sampled flag (➀). This will inevitably increases the risk of overlooking system edge-case
behaviors. On the other hand, tail-based sampling utilizes a filtering strategy, i.e., only persisting
traces that exhibit outliers symptoms (➅), e.g., high tail latency, error codes. However, tail-based
sampling entails enormous costs, as it must trace all requests and ingest the trace data to make
sampling decisions.
In this work, we take an orthogonal path to address the overhead challenges. We alleviate

the lossy nature of sampling-based schemes by tracing more requests, yet without increasing the
transmission overhead. Such a design can enhance the monitoring capability of edge-case behaviors.
Our core idea lies in the observation that there exists a large amount of redundancy in trace data.
Specifically, for each tracepoint, the generated spans may have repeated attribute values and events.
This renders repetitive transmissions of identical trace data, and we see this could be an opportunity
to improve the tracing efficiency. Recognizing this, we conduct a study to examine the redundancy
inherent in trace data. The insights obtained serve as essential design principles of our approach.

2.2 A Study of the Redundancy in Trace Data
In this section, we present our study regarding the redundancy of trace data. By redundancy, we
mean the recurrence of identical information, e.g., attributes and events, that is observed repeatedly
across multiple traces. The identification of such repetitive patterns presents an opportunity to
enhance the efficiency of distributed tracing through the application of compression techniques.
By strategically reducing the redundancy, we can optimize the transmission overhead of trace data,
thereby improving the scalability of the tracing infrastructure without compromising data integrity.

The studied systems include an open-source microservices benchmark, i.e., Train Ticket, which
is popular in cloud-related research fields, and six application backend components that are se-
lected for their widespread use in modern cloud systems, i.e., gRPC (Client and Server), Apache
Kafka (Producer and Consumer), Servlet, MySQL, Redis, and MongoDB. They cover a diverse

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 5

0 5 10 15
Microservice ID (Train Ticket)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ra
tio

0 2 4 6 8
Service ID

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ra
di

o

Ratio with < 1000 occurrence Others

Fig. 2. Trace Data Redundancy Analysis

functionalities including message queuing, HTTP communication, remote procedure calls, database
management, etc. To collect their traces, we leverage the zero-code instrumentation capabiltiy of
OpenTelemetry [32]. It allows the collection of observability data, i.e., logs, metrics, and traces,
for applications without the need to modify the source code. This is achieved by using libraries,
plugins, or agent to instrument the libraries used by applications. It supports many programming
languages (e.g., Java, Go, Python) and a wide range of popular libraries and frameworks, including
requests and responses, database calls, message queue calls. By injecting typical workloads to the
studied systems (Section 5.1.1), we collect more than 40GB of trace data in total.
We quantify trace redundancy by measuring the proportion of duplicate key-value (KV) pairs

generated by each service. As a KV pair represents the fundamental unit of information within a
trace, assessing its repetition enables us to gauge the degree of information overlap. Specifically, for
each KV pair, we first count the number of its occurrence and then calculate its ratio over the total
number of KV pairs in the dataset. For example, in a trace dataset containing 100 KV pairs, if two
specific pairs appear once and ten times respectively, their redundancy ratios would be 1% and 10%,
respectively. We calculate the fraction of KV pairs within each service which occur less than 1,000
times, as well as those exceeding this threshold, as shown in Figure 2. We made two observations:

Traces are highly redundant. Based on the figures, we can see that for different microservices
in Train Ticket, around 70% of the total KV pairs are highly repetitive. Similar situations can be
found in the application components. The only exception is Apache Kafka, whose KV pairs tend
to be unique. The reason behind is that Kafka’s traces include the data from its message queues,
increasing the randomness of its KV pairs. We will discuss the impact during system evaluation
(Section 5). The results indicate that a significant portion of the trace data is characterized by
redundant information. An important reason is that services often engage in standard interactions
and perform routine operations that generate trace data with similar patterns. By capturing the
redundancy upon the generation of spans at the service side (➀), we can preemptively eliminate the
transmission of repetitive data that already exist in the backend. The backend can easily reconstruct
the complete spans based on their redundancy patterns (➅).
There exists structural redundancy among attributes. We also observe that there exists

certain redundancy at span level. OpenTelemetry’s semantic conventions [33] offer standardized
guidelines for naming common attributes across different kinds of operations and data. This is essen-
tial for maintaining the uniformity and compatibility of naming scheme across languages, libraries,
and platforms. In the naming scheme, attribute names are organized into hierarchical names-
paces to indicate their context or category, e.g., network.local.address, network.local.port,

, Vol. 1, No. 1, Article . Publication date: February 2024.

6 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

෍

Backend Trace
Collectors

Span
Reporting

1

2 3
4

5

6

Compressed Span
Reporting

Tracepoint

spans
compressed

spans

keep synced

Backend Trace
Collectors

SRT Map

…span recovery

…

double hashing
path 1 path 2 path 3 (new)

hashed paths

Differential
Synchronization

incremental
updates

Compressed Span
Reporting

Tracepoint

spans
compressed

spans

keep synced

Backend Trace
Collectors

SRT Map

…span recovery

…

mapping + hashing
path 1 path 2 path 3 (new)

hashed paths

Differential
Synchronization

incremental
updates

7

8

9

Fig. 3. System Architecture of Tracezip

network.peer.address. We can see that they share some commonwords. The attribute values also
exhibit similar commonality, e.g., Java Exception has java.io.IIOException, java.io.EOFException.
By removing such fine-grained redundancy, we can further reduce the overheads of span transmis-
sion.

3 METHODOLOGY
3.1 Overview
In this section, we present the design of Tracezip. The system architecture is illustrated in Figure 3,
in which we add a compression module (➆) to the service side and a corresponding decompression
module (➇) to the entry of the backend trace collectors. In the compression module, we maintain
two data structures, namely, a Span Retrieval Tree (SRT) and a dictionary, to constantly capture
the redundancy across the spans. Upon the generation of a span at the tracepoint, it undergoes
compression utilizing the above structures. If the span carries a new redundancy pattern, it will
be seamlessly integrated into the SRT and dictionary. This integration is crucial as it enriches the
structures, thereby facilitating the compression for subsequent spans. We accelerate the above
process by employing a combination of mapping and hashing techniques. At the decompression
module, the spans are restored to their original form by referring to the SRT and the dictionary.
To ensure a consistent and reliable data transmission, it is imperative that these data structures
are accurately synchronized between the service and backend sides. To achieve this, we develop a
differential update mechanism (➈). This mechanism is designed to precisely pinpoint and propagate
only the incremental changes in the data structures, ensuring an efficient synchronization process
that minimizes overhead while maximizing data consistency.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 7

3.2 Span Format Conventions
To compress spans by leveraging their recurring patterns, we first stipulate the format of a span.
For simplicity and readibility, we assume that a span adheres to the standard JSON data format that
defines it as a structured set of key-value pairs. The key is a string, while the value can be primitive
types (strings, numbers, booleans, and null) or two structured types (nested key-value pairs and
arrays). This aligns with the format specifications used in many tracing frameworks and tools,
e.g., OpenTelemetry [31], Jaeger [19], Zipkin [54]. Typical fields (keys) of a span include: Name (a
human-readable string representing the operation done), Parent Span ID (the span that caused the
creation of this span, empty for root spans), Start and End Timestamps (the start and end time of
the span), Span Context (the context of the span including the trace ID, the span ID, etc.), Attributes
(key-value pairs representing additional information about the span), Span Events (structured log
messages/annotations on a span), etc. It is important to note that our proposed algorithm is not
restricted to JSON or any particular serialization format. For example, Tracezip can work effectively
when Protobuf (Protocol Buffers) [2] is used for trace data serialization. With Protobuf’s powerful
deserialization capabilities, we can leverage its reflection-like APIs or direct-access methods to
dynamically access the fields and values of spans. Additionally, Protobuf is designed to be backward
and forward compatible, allowing us to modify the message definition by adding or removing fields
while maintaining compatibility with older data. Such operations are essential for reducing trace
redundancy, e.g., removing span elements that are deemed repetitive.
We also assume that spans possess structural locality, meaning that during the continuous

execution of a service or component, all spans sharing a common span Name will exhibit an
identical structure. In other words, spans with the same Name will consistently retain the same
set of keys (e.g., attributes, tags, and metadata), differing only in the specific values associated
with them. This assumption arises naturally from the way distributed tracing systems operate,
where spans typically represent predefined operations or events within the service workflow. These
operations are implemented as part of the service’s codebase, which enforces a fixed schema or
structure for spans generated by specific instrumentation points. This structural consistency allows
for reliable trace analysis, optimization, and redundancy reduction, as the predictability of span
structures minimizes the need for per-span schema discovery during processing.

3.3 Span Retrieval Compression and Uncompression
A straightforward approach to compressing spans involves the use of a dictionary. This method
creates a dictionary where every unique key and value is assigned a unique identifier. During
the compression process, the keys and values of each span are substituted by the corresponding
identifiers. The size of the span can then be reduced as the identifiers are much smaller than the
original data. However, as revealed by our empirical study, there can still be redundant information
among the identifiers. The pure dictionary approach compresses data on a one-to-one basis, i.e.,
one identifier corresponds to one KV pair. If multiple spans share a collection of common key-value
pairs, it is possible to utilize a single identifier to represent this entire set of shared pairs, thereby
amplifying the compression efficiency. Thus, we propose to leverage the correlations among the
values of spans to further eliminate repetitive information.

Our idea is that for spans generated in each service instance, we organize their key-value pairs
as a prefix-tree-like data structure, referred to as Span Retrieval Tree (SRT). The SRT functions as
a multi-way tree, with all non-leaf nodes (except for the root) associated with a key-value pair.
For each type of span, identified by a unique span Name, there is only one leaf node connected
to all the last non-leaf nodes stemming from it. This leaf node holds a collection of keys without
values. Figure 4 illustrates an example of SRT, where the gray node and the yellow nodes represent

, Vol. 1, No. 1, Article . Publication date: February 2024.

8 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

Algorithm 1 Span Retrieval Tree (SRT) Reconstruction and Span Compression
1: Input: a stream of continuously generated spans, a threshold𝜓
2: Output: a constructed SRT T , compressed spans
3: Initialize an empty SRT T
4: for each span in spans do
5: if span Name not in T then
6: Chain all key-value pairs of span and add the path to the root of T
7: Assign an identifier to this new path
8: else
9: for each key at every depth of T do ⊲ traverse T from the root to the leaf
10: Get the corresponding {key: value} from span
11: if {key: value} does not exist at the current depth of T then
12: Chain the remaining key-value pairs of span and extend a new branch from the

direct parent node of key
13: Calculate the number of unique nodes at each depth of T
14: Move the keys to the leaf whose unique value number exceeds𝜓 , i.e., local fields
15: Reorder the keys of T based on the ascending number of their unique values
16: Reassign path identifiers
17: break
18: end if
19: end for
20: end if
21: Compress span with the corresponding path identifier and the values of local fields
22: end for

Access DB

SELECT

MySQL

SRT: time_base

Access Mem

READ WRITE

256
bytes

SUCCESS

parent.id, span.id, time.offset, …

…

1

address2 address1

64 bytes128 bytes

64 bytes

…

Access DB

SELECT

MySQL

SRT: time_base

Access Mem

READ WRITE

SUCCESS

span_id, parent_id, time_offset, …

…

1

address2 address1

64 bytes128 bytes

64 bytes
256 bytes

Access DB

SELECT

MySQL

SRT: time_base

Access Mem

READ WRITE

SUCCESS

span_id, parent_id, time_offset, …

…

1

address2 address1

64 bytes128 bytes

64 bytes

…

256 bytes

Root node

Non-leaf
nodes

Leaf nodes …

Span Name

Fig. 4. An Example of Span Retrieval Tree

the root and the leaves, respectively, while the remaining are the non-leaf nodes. Each span can
be “spelled out” by tracing a path from the root down to the leaf. The path of SRT represents the
set of KV pairs shared across multiple spans. The non-leaf nodes contain the fields that are more
repetitive, which we refer to as universal fields. Although spans may exhibit commonality, they will

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 9

Table 1. Span Examples of a Data-processing Service

name operation address data_size span_id others

Access Mem WRITE address1 64 bytes id1 ...

Access Mem READ address2 128 bytes id2 ...

Access Mem READ address2 64 bytes id3 ...

Access Mem WRITE address1 64 bytes id4 ...

Access Mem READ address2 256 bytes id5 ...

(a) Span examples of “Access Mem”

name type DB system status row.num others

Access DB INSERT MySQL SUCCESS 1 ...

Access DB SELECT MySQL SUCCESS 1 ...

Access DB DELETE MySQL SUCCESS 1 ...

(b) Span examples of “Access DB”

still have some unique KV pairs, such as those related to ID and time information. We refer to such
pairs as local fields and only store their keys at the leaf. The rationale is that such unique fields are
incompressible, i.e., not shared with other spans, so we discard their values. Based on SRT, a span
can be represented as a unique path identifier plus its exclusive values that are extracted according to
the keys in the leaf node. Each path identifier collectively represents the KV pairs shared among
spans, instead of one identifier for each key and value. Since these common KV pairs constitute a
significant portion, the trace size can be substantially reduced, enhancing the overall efficiency.
We present our algorithm for SRT construction and span compression (i.e., Algorithm 1) and

explain it using span examples in Table 1. Suppose these spans are continuously generated by
different tracepoints of a data-accessing service, including memory and database. Each tracepoint
produces a specific type of span with varying attributes. The algorithm takes the stream of spans
as input, and the resulting SRT is shown in Figure 4. For each new type of span with a previously
unseen span Name, we simply chain all fields of the span (line 6) and add the resulting path
to the SRT root. For example, the first row of Table 1-(a) will be structured as Access Mem↩→
WRITE↩→address1↩→64 bytes↩→id1 (we omit the keys of the nodes and the other attributes), shown
as the pink dashed rectangles. For spans with a known Name, we traverse the SRT from the root to
the leaf, and use the key at each depth to retrieve the corresponding key-value pair from the span
(line 10). If a retrieved pair does not exist in the SRT, the remaining key-value pairs are chained to
construct a sub-path, which is then added as a new branch to the direct parent node (line 12). For
example, the second row adds a new path, READ↩→address2↩→128 bytes↩→id2, to node Access Mem.
Each path of SRT will be assigned a unique identifier, as described in Section 4.1.
In SRT, once a new path emerges, we calculate the number of distinct nodes at the same depth

(line 13), which represents the number of different values of a key, e.g., the key span.id has five
distinct values id1∽id5. We set a threshold𝜓 for the size of values a key can have. A key with too
many values will be regarded as a local field and moved to the leaf (line 14). For example, span.id

, Vol. 1, No. 1, Article . Publication date: February 2024.

10 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

will be in the leaf if𝜓 = 3. With the constructed SRT, the fourth row can be compactly represented
as the identifier of the first path, i.e., the pink path, coupled with its unique value, i.e., id4 (line 21).
Time-related fields such as span start/end time is also a typical local field. Since spans generated in a
short time period will have close temporal fields, we set a time_base at the root node, which allows
the leaves to store only the offset relative to the time base. This is a common way to compress
temporal data. Another special local field is the nested JSON object, such as {“attributes”: {“ip”:
“172.17.0.1”, “port”: 26040}}. We represent the nested structure by prefixing the keys of the child JSON
object with the parent’s key (e.g., “attributes-ip” and “attributes-port”), which allows the backend to
easily restore the original hierarchy. Technically, spans can extend to any depth as required by the
tracing needs. For the consideration of SRT’s size, we set a depth limit, which defaults to two, and
convert the values of the overly deep keys into string type. Similar to other string fields, they will
be moved to the leaves if exhibiting too much diversity.
After compression, the span data that needs to be transmitted to the backend trace collector

become significantly smaller in size, i.e., only the path identifier and the values of local fields
specified by the leaf. At the backend side, the uncompression process to restore the original
span is straightforward and efficient. This involves reconstructing the local fields based on the
corresponding values received and combining them with the universal fields based on the path
identifier. In this process, the backend side should keep the latest copy of the SRT and the value of
time_base. We introduce an efficient synchronization mechanism later in Section 4.2. For time_base,
we periodically reset it, e.g., every second, ensuring that the time offset remains consistently small.

3.4 Optimizations for Span Retrieval Tree
So far, we have introduced the algorithms for span compression and uncompression. It can be seen
that Tracezip has a small computational complexity. This is because for each span, these processes
involve only a single path traversal of the SRT from the root to a leaf. However, the issue of space
complexity presents a more significant challenge. The SRT can potentially grow too large and
consume an excessive amount of memory. Besides setting a hard constraint on the memory, we
have also identified some opportunities to optimize its size.

3.4.1 Span Retrieval Tree Restructuring. During the construction of SRT in Figure 4, we simply
follow the left-to-right order of keys in Table 1 to form the parent-child relations among nodes.
For example, key address is the child of name and also the parent of data.size. We observe that this
may result in a sub-optimal SRT structure. Specifically, for the SRT in Figure 5 which is built based
on the spans in Table 1-(b), we can see that the three paths differ only in the type field. A better
structure can be obtained by moving type down to the bottom, which avoids the recurrence of the
other three fields. Based on this finding, we propose the following way to restructure the SRT. In
Section 3.3, we have calculated the number of possible values associated with each key once a new
path emerges. If a parent field has more values than its child, we swap their positions in the SRT.
That is, we reorder the keys of SRT based on the ascending number of their unique values (line 15).
After reordering, the identical nodes at the same depth will be merged, e.g., MySQL, SUCCESS, and
1 in Figure 5. Finally, the path identifiers of the restructured SRT will be adjusted (line 16).

3.4.2 Mapping-based Tree Compression. Although we have restructured the SRT to eliminate
redundant nodes, there could still be repeated keys and values in it. For example, in Figure 4, key
data.size appears in all data.size nodes, e.g., {“data.size”: “64 types”} and two of them also share value
64 types. Thus, to further compress the size of SRT, we employ a dictionary to map keys/values
that occur multiple times to shorter identifiers. We construct the identifiers using the standard
alphanumeric set, i.e., [0-9a-zA-Z]. Initially, the hashed output consists of a single character, from
’0’ to ’9,’ followed by ’a’ through ’z,’ and finally ’A’ through ’Z.’ Upon exhausting the single character

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 11

Access DB

SELECT

MySQL

SFT: time_base

Access Mem

READ

address1

WRITE

128 bytes

64 bytes

256 bytes

SUCCESS

parent id: p_id
span id: s_id
time: time_offset
context: {…}

…

1

address2

64 bytes

Access DB

INSERT

MySQL

SUCCESS

1

READ

WRITE

SELECT

MySQL

SUCCESS

1

DELETE

MySQL

SUCCESS

1

Access DB

MySQL

SUCCESS

1

INSERT

SELECT

DELETE

Fig. 5. Span Retrieval Tree Restructuring

possibilities, the function increases the length of the hash output to two characters, starting from
’01,’ and so forth. Since each universal field has limited distinct values, i.e., smaller than 𝜓 , the
dictionary will also be small in size. Note we do not encode the values of local fields (not in the
SRT), which may inevitably make the dictionary too big given their diversity. Similar to the SRT
synchronization process between services and tracing backend, the dictionary will be sent to the
backend every time it undergoes an update.

Based on our empirical study (Section 2.2), there exists structural redundancy among the attributes
of a span. We address this issue by examining the ingredients of the attributes. Specifically, when
constructing the dictionary, we encode the common sub-fields shared among spans (instead of
the entire fields) as identifiers. These sub-field identifiers are then used to compose the complete
attributes. Take a span example from OpenTelemetry [31], which contains the following fields:

{
 "net.transport": "IP.TCP",
 "net.peer.ip": "172.17.0.1",
 "net.peer.port": "51820",
 "net.host.ip": "10.177.2.152",
 "net.host.port": "26040",
 ...
}

We can see that in the keys, there are some words that appear multiple times, e.g., net, host, port.
Without considering such correlations, we could potentially introduce too much lengthy keys to
the dictionary. To remove such redundancy, we first separate each key into a list of tokens based
on delimiters dot (“.”) and underline (“_”), which are configurable. When encoding the key, each of
its tokens will be mapped to the corresponding identifier. As the value part exhibits more diversity,
we only apply this technique to the keys to avoid too much computational overhead.

4 IMPLEMENTATION
We have implemented Tracezip inside the OpenTelemetry Collector with around 3K lines of
Golang code. The OpenTelemetry Collector offers a vendor-agnostic implementation of how to

, Vol. 1, No. 1, Article . Publication date: February 2024.

12 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

manage telemetry data, which mainly includes four types of components: exporters, processors,
receivers, and extensions. We implement the span retrieval compression and decompression on the
exporter and receiver, which run at the service side and backend side, respectively. The exporter is
responsible for building and updating the SRT and dictionary, compressing spans on the fly, and
sending them to the remote backend. After accepting the compressed data, the receiver performs
span uncompression. We outline some important details concerning the implementation.

4.1 Search Acceleration by Hashing
A straightforward data structure to implement SRT would be linked representation, which enjoys
the benefits of dynamic size and efficient alterations (e.g., insertion and deletion). However, in
linked representation, the tree nodes are not stored contiguously or nearby in memory, potentially
leading to more cache misses. This factor can significantly impede the speed of path search within
SRT. To accelerate the search process, we apply hashing to convert each unique path of SRT to a
path identifier, which is similar to that in Section 3.4.2. Specifically, for each path, starting from
the root we join the values of non-leaf nodes sequentially with a comma separator (similar to the
CSV format). Based on the composed path string, we maintain a {path: identifier} mapping at the
exporter. When a new span is generated at the exporter, we extract the values of its universal fields
based on the order in SRT. The path search can then be quickly done for the span by checking
if its path string exists in the map. We use the map data type in Golang, which provides a highly
efficient way to achieve this. For any updates to the SRT, we only need to renew the affected paths
as discussed in the next subsection.

4.2 Differential Data Synchronization
To ensure reliable span compression and uncompression, the exporter and receiver must maintain
consistent copies of both the SRT and dictionary structures. One simple strategy is for the exporter
to send the latest versions of these structures upon any update. However, given that updates often
affect only a small segment of the overall structures, sending redundant (i.e., unchanged) data with
each update would incur network overhead and potentially defer the uncompression process. Thus,
we implement a differential update mechanism for more resource-efficient synchronization. The
core idea is that at the receiver, instead of maintaining another SRT, we keep a path hashing in
the opposite direction, i.e., {identifier : path}. For any updates to the non-leaf nodes, we can easily
pinpoint the affected paths and perform the renewal. For example, in Figure 3, the emergence of
a new value (denoted by the pink dashed rectangle) gives rise to a novel path, i.e., path 3. In this
case, we can add a new entry to the {path: identifier} mapping at the exporter and sync it with
the receiver. For path deletion, the exporter can simply send the corresponding identifier to the
receiver for record elimination. Other updates are essentially a combination of path addition and
deletion.
For local fields and the mapping dictionary, it suffices to communicate only the changes to the

receiver. To ensure that the structures at the receiver is not outdated during the transmission of
spans, we leverage the batch processor of OpenTelemetry Collector. It caches the spans sent by
SDK until the batch memory is full or its timer expires, instead of immediately forwarding them.
After compressing the spans in the buffer, we will make sure that the SRT and dictionary with
updates (if any) have been synced with the receiver side before releasing the data.

5 EXPERIMENTAL EVALUATION
In this section, we present the evaluation of Tracezip. We first introduce the experimental settings,
including the deployed cloud services, the metric for evaluation, and the baseline methods. Next,

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 13

we demonstrate the experimental results, which include the effectiveness of trace compression and
the analysis of both efficiency and overhead.

5.1 Experimental Setup
5.1.1 Deployed Cloud Systems. To evaluate the compression performance in a realistic environment,
we deploy popular cloud systems and collect their traces using the OpenTelemetry Collector
instrumented with Tracezip. We serialize the trace data into JSON format and transmit them
utilizing HTTP protocols. The selected services include one microservices benchmark named Train
Ticket [52] and six open-source application components, including gRPC, Apache Kafka, Servlet,
MySQL, Redis, MongoDB.
Train Ticket is a railway ticketing application comprising 41 microservices, each responsible

for a specific function, such as user authentication, ticket booking, payment processing, and
notification. This benchmark is implemented in different programming languages such as Java,
Go, Node.js, Python, etc. Train Ticket allows a comprehensive evaluation in a multifunctional
scenario, which has been widely used in many trace-related topics, including trace sampling [4],
root cause localization [51, 52], service architecture measurement [35], etc. In order to replicate
a live production environment, we employed Locust [27], an open-loop asynchronous workload
generator, to drive the services. The workloads are directly borrowed from the original work [52]
that introduces the Train Ticket microservices.
The selected six application components have widespread adoption and play critical roles in

modern cloud service architectures. They represent a diverse cross-section of the technology stack,
which play a foundational role in constructing robust, scalable, and high-performance distributed
systems. We generate workloads that reflect real-world usage patterns common in cloud-native and
microservices environments. For communication protocols like gRPC and web service frameworks
such as Apache HTTP, we simulate typical traffic and user interactions. In messaging systems like
Kafka, workloads involve data streaming and message processing, while for data storage solutions
like MySQL, Redis, and MongoDB, we focus on common database operations such as read/write
transactions. This approach ensures our findings are applicable and relevant to a wide range of
real-world scenarios.

5.1.2 Evaluation Metric. To measure the effectiveness of Tracezip, we employ Compression Ratio
(CR) as the metric, which is widely used in the evaluation of existing compression methods for
telemetry data [24, 26]. The definition is given below:

𝐶𝑅 =
Original File Size

Compressed File Size
In each experiment, we run the same set of workloads, so the size of the original file remains

constant. With different compression approaches and configurations, the resulting compressed file
may vary in size. As the file size decreases, a higher level of compression is attained, indicating
more effective compression performance.

5.1.3 Baseline Methods. Since we are the first to study the problem of trace compression in a live
production scenario, there has not been any baseline methods/systems for comparison. Note that
Tracezip is orthogonal to existing trace sampling techniques, which compress traces via reducing
the volume of data collected. Thus, they cannot be directly compared to Tracezip. In this case,
we opt for general-purpose compression algorithms which can be used as out-of-the-box tools
to compress traces. Three prevalent and effective algorithms are selected, that is, gzip, bzip2, and
lzma. However, as they are not tailored for trace data, suggesting potential for further performance

, Vol. 1, No. 1, Article . Publication date: February 2024.

14 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

Table 2. Performance of Trace Compression on Open-source Cloud Systems

Train Ticket gRPC Kafka Servlet MySQL Redis MongoDB

Size CR Size CR Size CR Size CR Size CR Size CR Size CR

Raw 21.0 1 3.08 1 2.47 1 9.36 1 1.88 1 2.01 1 1.10 1

Tracezip 5.19 4.05 0.58 5.31 0.627 3.94 1.45 6.46 0.30 6.27 0.33 6.09 0.21 5.24

gzip 1.93 10.90 0.163 18.91 0.143 17.27 0.506 18.50 0.112 16.85 0.084 23.93 0.065 16.92

Tracezip (gzip) 1.29 16.26 0.140 22.81 0.133 18.57 0.396 23.64 0.091 20.61 0.066 30.45 0.051 21.57

improvement 33.0% 1.49x 17.0% 1.17x 7.0% 1.08x 21.7% 1.28x 18.2% 1.22x 21.4% 1.27x 21.5% 1.27x

bzip2 2.41 8.71 0.135 21.96 0.124 19.92 0.421 22.23 0.097 19.38 0.056 35.89 0.054 20.37

Tracezip (bzip2) 1.34 15.62 0.128 24.00 0.116 21.29 0.365 25.64 0.087 21.56 0.044 45.68 0.048 22.92

improvement 30.3% 1.75x 8.5% 1.10x 6.5% 1.07x 13.3% 1.15x 10.3% 1.12x 21.4% 1.27x 11.1% 1.13x

lzma 1.93 10.89 0.174 17.67 0.128 19.29 0.487 19.22 0.121 15.61 0.064 31.41 0.065 16.92

Tracezip (lzma) 1.55 13.54 0.146 21.14 0.012 20.58 0.412 22.72 0.097 19.48 0.054 37.2 0.055 20

improvement 35.7% 1.24x 16.4% 1.20x 9.6% 1.07x 20.1% 1.18x 19.9% 1.2x 17.4% 1.19x 22.7% 1.18x

improvement. Our goal is to illustrate the additional compression benefits that Tracezip can provide
when applied in conjunction with these standard algorithms.

5.2 Effectiveness of Trace Compression
5.2.1 Open-source Cloud Systems. Table 2 presents the compression performance when collecting
traces of the microservices benchmark and cloud applications components. For each system, we
calculate the total size of traces collected, the size after compression, and the resultant compression
ratios (CRs) when applying different compression algorithms. We can see that Tracezip, as a
standalone solution, can achieve CRs ranging from 3.94 to 6.46. This demonstrates that Tracezip
can remove more amount of redundant information than that shown by our preliminary study in
Section 2.2. Traditional compression tools, i.e., gzip, bzip2, and lzma, reduce the file size with a
combination of different techniques such as dictionary-based compression and Huffman coding.
Among them, bzip2 generally outperforms the others across most systems, with gzip having
the least effectiveness. In the Train Ticket benchmark, the tools demonstrate the least effective
compression with a CR of roughly 10, while on the cloud application components, they deliver a
better performance, attaining a comparable CR of about 20.

When working in conjunction with the general-purpose compression algorithms, Tracezip can
provide additional performance gain. In general, the improvement achieved by Tracezip when
combined with bzip2 is less pronounced than when paired with other algorithms. This can be
attributed to its already superior compression capability, which may reduce the incremental benefits
that Tracezip can offer. In the case of the microservices benchmark, namely Train Ticket, Tracezip
achieves a more significant performance improvement of 30%∼35%. However, the improvement is
less substantial in cloud application components, with Apache Kafka demonstrating an enhance-
ment of less than 10%. As mentioned in Section 2.2, the traces generated by Kafka include the data
from its message queues, rendering the attributes more random.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 15

35.1% 43.6% 19.8%

Fig. 6. Compression on Alibaba Production Traces

So far we can make an important observation: compared to application backend components,
general-purpose compression algorithms are less effective for processing the traces from Train
Ticket, where Tracezip can offer more substantial improvement. Our careful investigation reveals
the following important insight. Based on zero-code instrumentation, the spans collected encap-
sulate many attributes related to network connectivity (as specified by OpenTelemetry semantic
conventions), such as the hostname, IP address, and port of the peer server. For instance, MongoDB
captures details of the requests; Kafka producers log information about their consumers. Such
information provides a comprehensive view of the request’s journey across the distributed system.
In production systems, the invocations among different services and components constitute a com-
plex graph, with each node potentially connected to dozens or more instances. Our experimental
environment may not be able to accurately replicate the conditions of the production scenarios.
Consequently, the connectivity information tends to be relatively static, especially for application
backend components that operate at infrastructure and platform layer. In this case, both Tracezip
and traditional algorithms can properly compress such information, reducing the performance gain
that Tracezip can offer.
On the other hand, Train Ticket comprises tens of microservices, which can form a invocation

graph with moderate complexity. Additional, as a service-oriented application, the traces from
Train Ticket contain more information related to business logic. These two factors render the
traces produced in Train Ticket more diverse, and the compressible information is more scattered.
Traditional compression algorithms are limited to exploiting redundant information within a short
sliding window (e.g., 32KB in gzip’s Deflate algorithm). On the other hand, Tracezip utilizes SRT to
continuously capture the redundancy patterns across spans in a global manner, which can further
reduce the redundancy.

5.2.2 Production Trace Data. We also evaluate Tracezip using production trace data collected from
Alibaba. Compared to existing microservices benchmarks, this dataset represents the call graphs of
a large-scale deployment of over 20,000 microservices in production clusters. The participating
microservices can be categorized into two types: stateless services and stateful services. State-
less services operate independently of any stored state data, whereas stateful services, including
databases and systems like Memcached, are required to maintain state information. There are three
types of communication paradigms between pairs of microservices: inter-process communication,
remote invocation, and indirect communication. In addition to this diversity, the trace data also
exhibit statistical characteristics typical of industry scale. For example, the size of microservice call

, Vol. 1, No. 1, Article . Publication date: February 2024.

16 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

10 100 1000 10000
0

1

2

3

4

5

Si
ze

 (M
B

)

0

10

20

30

40

Im
pr

ov
em

en
t (

%
)

Fig. 7. Performance with Different𝜓

graphs follows a heavy-tail distribution; there is a non-negligible fraction of hot-spot microservices;
and the microservices can form highly dynamic call dependencies at runtime. This real-world
application allows us to examine Tracezip’s efficacy in handling large-scale, complex data, which
is crucial for understanding its potential in practical, production-level scenarios.

Figure 6 illustrates the evaluation results. The raw size of the trace data used in our experiments
is 26.15GB. The CRs attained by gzip, bzip2, and lzma are 6.55, 7.30, and 8.52, respectively, reducing
the data size to 3.99GB, 3.58GB, and 3.07GB. These CRs are marginally lower than those recorded in
the Train Ticket benchmark. This observation aligns with our finding in Section 5.2. That is, relying
predominantly on local information, traditional compression algorithms might find it challenging
to efficiently compress data characterized by significant diversity and complexity. This is where the
strength of Tracezip becomes evident. Tracezip, with its ability to identify global compression
opportunities, enhances the compression performance by 35.1%, 43.6%, and 37.8%, respectively. For
example, the combination of Tracezip and lzma achieves the optimal CR of 13.69, and compresses
the data to a minimal size of 1.91GB. This result underscores the benefits introduced by Tracezip,
especially when dealing with large-scale and intricate trace data.

5.3 Performance Overhead
We examine the overhead of Tracezip from the perspectives of space complexity and computational
efficiency.

5.3.1 Space Complexity. At the service side, Tracezip maintains three types of data structures to
capture the redundancy among trace spans and perform compression, namely, a SRT along with
its hashed paths and a map for dictionary-based compression. To prevent impeding the normal
execution of the service, it is imperative that they are constrained in size without excessive memory
consumption. To study the space complexity of Tracezip, we select a microservice in Alibaba
trace data with diverse spans and calculate the cumulative size of the three data structures after
the compression procedure. A critical parameter influencing this size is the threshold 𝜓 , which
dictates the maximum number of distinct values for universal attributes. An attribute having an
exceeding number of values will be moved to the leaf node, becoming a local attribute. A larger𝜓
enables Tracezip to compress a broader spectrum of span fields, enhancing performance but at
the cost of a more substantial SRT and mapping structure. Conversely, a small𝜓 compromises the
effectiveness but with lower space overhead in return.

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 17

Figure 7 illustrates the results, where we can see both the data structure size and compression
improvement grow with a larger 𝜓 . In the case of 𝜓=1,000, SRT and map together take up only
2.56MB of memory, but the performance gain that Tracezip achieves is significant, i.e., 33.8%.
This result underscores Tracezip’s capacity to achieve substantial compression efficiency while
maintaining a balanced memory footprint. However, we notice that the quantities of distinct
values that span attributes can have tend to polarize. This can also be observed in Figure 7. The
performance plateaus even when𝜓=10,000, meaning there is no attributes whose value size falls in
the range of [1,000, 10,000]. Certain attributes (e.g., authentication tokens, DB queries, span ID)
might possess a substantially larger set of values compared to others. Consequently, their inclusion
(when𝜓 is too large) in the SRT could potentially bloat its size. To address the variability in attribute
value distribution and maintain manageable memory usage, we also set a cap on the size of the
data structures, e.g., limiting it to 5MB.

5.3.2 Computational Efficiency. To ensure Tracezip can be seamlessly integrated with services, all
operations are designed for optimal efficiency. The time complexity of Tracezip’s core operations
is analyzed as follows. The construction and restructuring of SRT operate with a time complexity of
O(𝑚), where𝑚 is the number of span attributes. In many scenarios,𝑚 typically remains below 20.
Other operations, such as hashing, dictionary mapping, and path searching, all have a complexity
of O(1). Thus, the overall time complexity of Tracezip is linear, making it highly efficient.
To evaluate the efficiency of Tracezip, we measure the trace collection throughput for the

basic microservice [40] of the Train Ticket benchmark. Specifically, we deployed the instrumented
OpenTelemetry system within a container (configured with one core and 1GB of memory) to
compress and relay the spans. The throughput is calculated as the uncompressed size of spans
divided by the time token to transmit the traces from the service to the backend. In the most basic
setting, referred to as Original, the time is purely the period needed for data transmission and JSON
serialization. When compression techniques such as Tracezip and gzip are employed, we take
into account the additional time required for data compression and decompression. The results are
present in Table 3.

Table 3. Performance of Throughput (MB/s) on Train Ticket

𝜓 1 10 100 1,000

Original 13.98 13.57 13.78 14.05

+Tracezip 89.34 94.35 109.68 108.15

+gzip 14.65 14.27 14.35 14.02

+Tracezip (gzip) 60.65 63.78 68.78 68.56

It can be seen that upon the integration of Tracezip, the throughput of trace collection is accel-
erated by nearly eight times (e.g., from 13.78MB/s to 109.68MB/s). Another interesting observation
is that gzip brings little performance gain to the throughput. One important reason is that gzip
compression is performed by the HTTP client library before the data is sent over the network.
Thus, gzip is applied after the data has been serialized into JSON. As a time-consuming step, JSON
serialization constitutes the performance bottleneck. Moreover, gzip indiscriminately attempts
to compress all information, including elements such as trace IDs, span IDs, and authentication
tokens, which are inherently resistant to compression. The (wasted) computational overhead of
gzip compression and decompression thus offsets its benefits. In contrast, Tracezip can accurately

, Vol. 1, No. 1, Article . Publication date: February 2024.

18 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

identify the incompressible attributes, i.e., the local fields, and bypass them. Since Tracezip is
applied before JSON serialization, it substantially reduces the volume of data that needs to be
encoded. Such a design not only improves the throughput, but also benefits the CPU usage. Our
experiments indicate that the CPU utilization of Tracezip is merely 20%∼40% of that in the Original
and +gzip settings.

5.4 Threats to Validity
When evaluating the performance and applicability of Tracezip, several potential threats to validity
must be considered to ensure the robustness and generalizability of our findings.
Internal validity. One of the primary concerns regarding internal validity is the accuracy

of our evaluation metrics and the potential biases in our experimental setup. Real-world cloud
services exhibit a vast array of complexities and variations, making it challenging to capture all
possible scenarios within a single study. To address this challenge, we carefully selected a diverse
set of microservices benchmarks and production trace data from Alibaba that we believe are
representative of typical cloud service operations. These datasets were chosen to reflect common
patterns and behaviors observed in real-world applications, thus providing a meaningful context
for evaluating Tracezip’s performance. Additionally, any configuration or tuning of Tracezip
that is specific to these datasets might inadvertently favor our approach, potentially skewing the
results. To mitigate this, we ensured that the benchmarks and datasets were selected and configured
independently of Tracezip’s development process.

External validity. External validity pertains to the generalizability of our results to other settings
or systems. Our evaluation of Tracezip was specifically designed to address the diversity inherent in
real-world cloud systems.We implemented and tested Tracezipwithin the OpenTelemetry Collector
framework and evaluated it across a range of cloud environments and backend components,
including gRPC, Apache Kafka, MySQL, and others. These settings were carefully selected to
reflect the variety of systems and technologies commonly used in cloud services, ensuring a
comprehensive basis for assessing Tracezip’s effectiveness. By choosing such a diverse array of
environments and applications, we aimed to capture the broad spectrum of redundancy patterns
and data characteristics found in typical cloud systems. This approach helps to ensure that our
findings are applicable to a wide range of real-world scenarios, demonstrating Tracezip’s capability
to perform effectively in diverse and dynamic cloud environments.

6 DISCUSSION
7 RELATEDWORK
7.1 Distributed Tracing Systems
Distributed tracing offers a holistic, end-to-end perspective on data requests as they navigate the
myriad services within a distributed application. Pioneering works, such as Magpie [1], Who-
dunit [3], X-Trace [11], and Dapper [39], have laid the foundation of tracing in distributed systems.
Recent studies take steps further to address specific challenges to pursue accurate and efficient trac-
ing capabilities. Pivot Tracing [29] and Canopy [20] emphasize cross-application and cross-platform
tracing to ensure seamless monitoring and diagnostics across diverse environments. Panorama [16]
achieves more sophisticated observability by collecting inter-process and inter-thread error signals.
DeepFlow [38] is a non-intrusive distributed tracing framework for troubleshooting microservices.
It establishes a network-centric tracing plane with eBPF technique in the kernel. OpenTeleme-
try [30] standardizes the APIs for telemetry data collection, instrumentation libraries, and semantic
conventions. It can be used with a broad variety of observability backends, such as Jaeger [19],
Zipkin [54], and Prometheus [36].

, Vol. 1, No. 1, Article . Publication date: February 2024.

Tracezip: Efficient Distributed Tracing via Trace Compression 19

7.2 Trace-based System Management
Besides the infrastructure for distributed tracing, trace data are extensively used in many system
reliability management tasks. The empirical study presented in [52] demonstrates that the current
industrial practices of microservice debugging can be enhanced by integrating appropriate tracing
and visualization techniques. MEPFL [53] leverages system trace logs to perform latent error
prediction and fault localization for microservice applications. Some works employ traces to
construct the dependency graph of microservices for root cause analysis. This include machine
learning-based approaches, such as random walk [21], PageRank [45], hierarchical clustering and
K-means [47], and spectral analysis [51], etc. In recent years, trace-based fault diagnosis also resorts
to deep learning-based approaches, e.g., [12] combines CNN with LSTM to address the complexity
of performance debugging. TraceAnomaly [51] uses deep Bayesian network to localize anomalous
services in an unsupervised way based on trace representation learning. Some work [8, 23, 46]
utilizes a multi-modal approach, which integrates traces with logs [6, 10, 15] and metrics [7, 50] to
provide more comprehensive information about system status for microservice troubleshooting.
Traces also serve a crucial role in in analyzing system dependencies [28, 44], critical paths [49],
resource characterization [25, 41], and microservice architecture [18, 35].

7.3 Trace Sampling and Compression
In production environments, traces can carry comprehensive details, which, if not managed prop-
erly, can lead to significant overheads and potentially impact system performance. To reduce
overheads, the de facto practice is to capture fewer traces. Different from head-based sampling with
random trace collection, tail-based solutions enable biased sampling towards more informative
and uncommon traces. Some learning-based approaches [4, 17, 22] have been proposed in this
field. Sieve [17] employs Robust Random Cut Forest (RRCF) algorithm, a variant of Isolation Forest,
to calculate an attention score for each trace, which is then used to determine its sampling prob-
ability. Sifter [22] captures edge-case traces by learning an unbiased, low-dimensional model to
reconstruct the fixed-length sub-paths of traces. A larger reconstruction loss indicates a higher
sampling probability. SampleHST [13] and Perch utilize clustering techniques to divide traces into
different groups, and sampling is then performed in each group. STEAM [14] preserves system
observability by sampling mutually dissimilar traces. It employs Graph Neural Networks (GNN) for
trace representation, and requires human labeling to incorporate domain knowledge. Hindsight [48]
introduces the idea of retroactive sampling, which combines the advantages of head-based and
tail-based sampling. Specifically, it allows the tracing for all requests at the service side, but reports
trace data only after outlier symptoms are detected.

Different from prior research, Tracezip introduces an innovative methodology for mitigating the
overhead associated with distributed tracing. Rather than forecasting the significance of individual
traces, Tracezip focuses on the compression of spans by leveraging their inherent redundancy. Our
approach can work with existing techniques complementarily to enhance the tracing performance.
It efficiently manages data volume while ensuring that the essential insights provided by trace data
are preserved.

8 CONCLUSION
In this paper, we propose Tracezip, an online and scalable solution to mitigate the computational
and storage overhead associated with distributed tracing. Existing trace sampling techniques either
sacrifices the accurate detection of edge cases or tracing scalability. As an orthogonal approach,
Tracezip reduces tracing overhead by compressing trace spans into a concise representation,
substantially reducing the costs of trace transmission and storage. This is achieved by removing the

, Vol. 1, No. 1, Article . Publication date: February 2024.

20 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

redundant data shared across multiple spans. The full trace spans can then be seamlessly restored
by retrieving the common data already delivered by previous spans. At the service side, such redun-
dancy is continuously encapsulated by Span Retrieval Tree (SRT), which will be synchronized at the
backend to ensure consistent trace compression and uncompression. To manage the complexity of
SRT, Tracezip constantly restructures SRT into its optimal form and employs mapping technique
to further reduces its size. Tracezip also encompasses a differential update mechanism for effi-
ciently synchronize SRT between services and the backend. We have implemented Tracezip insight
OpenTelemetry Collector and evaluated it on open-source cloud services and production trace data.
Experimental results highlight its potential to pave the way for efficient system monitoring.

ACKNOWLEDGMENT
The work described in this paper was supported by the National Natural Science Foundation
of China (No. 62402536). We extend our sincere gratitude to the anonymous reviewers for their
insightful feedback.

REFERENCES
[1] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth Narayanan. 2003. Magpie: Online Modelling and

Performance-aware Systems. In Proceedings of HotOS’03: 9th Workshop on Hot Topics in Operating Systems, May 18-21,
2003, Lihue (Kauai), Hawaii, USA, Michael B. Jones (Ed.). USENIX, 85–90. https://www.usenix.org/conference/hotos-
ix/magpie-online-modelling-and-performance-aware-systems

[2] Protocol Buffers. 2024. Protocol Buffers: language-neutral, platform-neutral extensible mechanisms for serializing
structured data. Retrieved August, 2024 from https://protobuf.dev/

[3] AnupamChanda, Alan L. Cox, andWilly Zwaenepoel. 2007. Whodunit: transactional profiling formulti-tier applications.
In Proceedings of the 2007 EuroSys Conference, Lisbon, Portugal, March 21-23, 2007, Paulo Ferreira, Thomas R. Gross, and
Luís Veiga (Eds.). ACM, 17–30. https://doi.org/10.1145/1272996.1273001

[4] Zhuangbin Chen, Zhihan Jiang, Yuxin Su, Michael R. Lyu, and Zibin Zheng. 2024. Tracemesh: Scalable and Streaming
Sampling for Distributed Traces. In 17th IEEE International Conference on Cloud Computing, CLOUD 2024, Shenzhen,
China, July 7-13, 2024, Rong N. Chang, Carl K. Chang, Jingwei Yang, Nimanthi L. Atukorala, Zhi Jin, Michael Sheng,
Jing Fan, Kenneth Fletcher, Qiang He, Tevfik Kosar, Santonu Sarkar, Sreekrishnan Venkateswaran, Shangguang
Wang, Xuanzhe Liu, Seetharami Seelam, Chandra Narayanaswami, and Ziliang Zong (Eds.). IEEE, 54–65. https:
//doi.org/10.1109/CLOUD62652.2024.00016

[5] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan Zhou, Li Yang, Jeffrey Sun, Zhangwei
Xu, Yingnong Dang, Feng Gao, Pu Zhao, Bo Qiao, Qingwei Lin, Dongmei Zhang, and Michael R. Lyu. 2020. Towards
intelligent incident management: why we need it and how we make it. In ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 1487–1497. https:
//doi.org/10.1145/3368089.3417055

[6] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R. Lyu. 2021. Experience Report: Deep Learning-
based System Log Analysis for Anomaly Detection. CoRR abs/2107.05908 (2021). arXiv:2107.05908 https://arxiv.org/
abs/2107.05908

[7] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, and Michael R. Lyu. 2022. Adaptive Performance
Anomaly Detection for Online Service Systems via Pattern Sketching. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 61–72. https://doi.org/10.1145/3510003.
3510085

[8] Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xuemin Wen, Xiao Ling, Yongqiang Yang, and Michael R.
Lyu. 2021. Graph-based Incident Aggregation for Large-Scale Online Service Systems. In 36th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. IEEE, 430–442.
https://doi.org/10.1109/ASE51524.2021.9678746

[9] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: real-world challenges and research innovations. In
Proceedings of the 41st International Conference on Software Engineering: Companion Proceedings, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 4–5. https:
//doi.org/10.1109/ICSE-COMPANION.2019.00023

[10] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly Detection and Diagnosis from System
Logs through Deep Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://www.usenix.org/conference/hotos-ix/magpie-online-modelling-and-performance-aware-systems
https://www.usenix.org/conference/hotos-ix/magpie-online-modelling-and-performance-aware-systems
https://protobuf.dev/
https://doi.org/10.1145/1272996.1273001
https://doi.org/10.1109/CLOUD62652.2024.00016
https://doi.org/10.1109/CLOUD62652.2024.00016
https://doi.org/10.1145/3368089.3417055
https://doi.org/10.1145/3368089.3417055
https://arxiv.org/abs/2107.05908
https://arxiv.org/abs/2107.05908
https://arxiv.org/abs/2107.05908
https://doi.org/10.1145/3510003.3510085
https://doi.org/10.1145/3510003.3510085
https://doi.org/10.1109/ASE51524.2021.9678746
https://doi.org/10.1109/ICSE-COMPANION.2019.00023
https://doi.org/10.1109/ICSE-COMPANION.2019.00023

Tracezip: Efficient Distributed Tracing via Trace Compression 21

Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu (Eds.). ACM, 1285–1298. https://doi.org/10.1145/3133956.3134015

[11] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. 2007. X-Trace: A Pervasive Network
Tracing Framework. In 4th Symposium on Networked Systems Design and Implementation (NSDI 2007), April 11-13,
2007, Cambridge, Massachusetts, USA, Proceedings, Hari Balakrishnan and Peter Druschel (Eds.). USENIX. http:
//www.usenix.org/events/nsdi07/tech/fonseca.html

[12] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina Delimitrou. 2019. Seer:
Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck
(Eds.). ACM, 19–33. https://doi.org/10.1145/3297858.3304004

[13] Alim Ul Gias, Yicheng Gao, Matthew Sheldon, José A. Perusquía, Owen O’Brien, and Giuliano Casale. 2023. SampleHST:
Efficient On-the-Fly Selection of Distributed Traces. In NOMS 2023, IEEE/IFIP Network Operations and Management
Symposium, Miami, FL, USA, May 8-12, 2023. IEEE, 1–9. https://doi.org/10.1109/NOMS56928.2023.10154383

[14] Shilin He, Botao Feng, Liqun Li, Xu Zhang, Yu Kang, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. 2023.
STEAM: Observability-Preserving Trace Sampling. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December
3-9, 2023, Satish Chandra, Kelly Blincoe, and Paolo Tonella (Eds.). ACM, 1750–1761. https://doi.org/10.1145/3611643.
3613881

[15] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R. Lyu. 2022. A Survey on Automated Log
Analysis for Reliability Engineering. ACM Comput. Surv. 54, 6 (2022), 130:1–130:37. https://doi.org/10.1145/3460345

[16] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong Zhou, and Yingnong Dang. 2018. Capturing and Enhancing
In Situ System Observability for Failure Detection. In 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, Andrea C. Arpaci-Dusseau and Geoff Voelker (Eds.).
USENIX Association, 1–16. https://www.usenix.org/conference/osdi18/presentation/huang

[17] Zicheng Huang, Pengfei Chen, Guangba Yu, Hongyang Chen, and Zibin Zheng. 2021. Sieve: Attention-based Sampling
of End-to-End Trace Data in Distributed Microservice Systems. In 2021 IEEE International Conference on Web Services,
ICWS 2021, Chicago, IL, USA, September 5-10, 2021, Carl K. Chang, Ernesto Daminai, Jing Fan, Parisa Ghodous, Michael
Maximilien, Zhongjie Wang, Robert Ward, and Jia Zhang (Eds.). IEEE, 436–446. https://doi.org/10.1109/ICWS53863.
2021.00063

[18] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. 2023. Lifting the veil on Meta’s microservice architecture: Analyses
of topology and request workflows. In 2023 USENIX Annual Technical Conference, USENIX ATC 2023, Boston, MA,
USA, July 10-12, 2023, Julia Lawall and Dan Williams (Eds.). USENIX Association, 419–432. https://www.usenix.org/
conference/atc23/presentation/huye

[19] Jaeger. 2024. An open source, distributed tracing platform. Retrieved March, 2024 from https://www.jaegertracing.io/
[20] Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edison Gao, Wiktor Kuropatwa, Joe O’Neill, KianWin Ong, Bill Schaller,

Pingjia Shan, Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. 2017. Canopy: An
End-to-End Performance Tracing And Analysis System. In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017. ACM, 34–50. https://doi.org/10.1145/3132747.3132749

[21] Myunghwan Kim, Roshan Sumbaly, and Sam Shah. 2013. Root cause detection in a service-oriented architecture.
In ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems, SIGMETRICS
’13, Pittsburgh, PA, USA, June 17-21, 2013, Mor Harchol-Balter, John R. Douceur, and Jun Xu (Eds.). ACM, 93–104.
https://doi.org/10.1145/2465529.2465753

[22] Pedro Henrique B. Las-Casas, Giorgi Papakerashvili, Vaastav Anand, and JonathanMace. 2019. Sifter: Scalable Sampling
for Distributed Traces, without Feature Engineering. In Proceedings of the ACM Symposium on Cloud Computing, SoCC
2019, Santa Cruz, CA, USA, November 20-23, 2019. ACM, 312–324. https://doi.org/10.1145/3357223.3362736

[23] Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, and Michael R. Lyu. 2023. Eadro: An End-to-End Troubleshooting
Framework for Microservices on Multi-source Data. In 45th IEEE/ACM International Conference on Software Engineering,
ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 1750–1762. https://doi.org/10.1109/ICSE48619.2023.00150

[24] Xiaoyun Li, Hongyu Zhang, Van-Hoang Le, and Pengfei Chen. 2024. LogShrink: Effective Log Compression by
Leveraging Commonality and Variability of Log Data. In Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 23:1–23:12. https://doi.org/10.1145/3597503.
3608129

[25] Jinyang Liu, Zhihan Jiang, Jiazhen Gu, Junjie Huang, Zhuangbin Chen, Cong Feng, Zengyin Yang, Yongqiang Yang,
and Michael R. Lyu. 2023. Prism: Revealing Hidden Functional Clusters from Massive Instances in Cloud Systems. In
38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023, Luxembourg, September 11-15,
2023. IEEE, 268–280. https://doi.org/10.1109/ASE56229.2023.00077

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1145/3133956.3134015
http://www.usenix.org/events/nsdi07/tech/fonseca.html
http://www.usenix.org/events/nsdi07/tech/fonseca.html
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1109/NOMS56928.2023.10154383
https://doi.org/10.1145/3611643.3613881
https://doi.org/10.1145/3611643.3613881
https://doi.org/10.1145/3460345
https://www.usenix.org/conference/osdi18/presentation/huang
https://doi.org/10.1109/ICWS53863.2021.00063
https://doi.org/10.1109/ICWS53863.2021.00063
https://www.usenix.org/conference/atc23/presentation/huye
https://www.usenix.org/conference/atc23/presentation/huye
https://www.jaegertracing.io/
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/2465529.2465753
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1109/ICSE48619.2023.00150
https://doi.org/10.1145/3597503.3608129
https://doi.org/10.1145/3597503.3608129
https://doi.org/10.1109/ASE56229.2023.00077

22 Zhuangbin Chen, Junsong Pu, and Zibin Zheng

[26] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R. Lyu. 2019. Logzip: Extracting Hidden
Structures via Iterative Clustering for Log Compression. In 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 863–873. https://doi.org/10.1109/ASE.
2019.00085

[27] Locust. 2024. An open source load testing tool. Retrieved August, 2024 from https://locust.io/
[28] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong

Xu. 2021. Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis. In SoCC ’21: ACM
Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021, Carlo Curino, Georgia Koutrika, and Ravi
Netravali (Eds.). ACM, 412–426. https://doi.org/10.1145/3472883.3487003

[29] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing: dynamic causal monitoring for distributed
systems. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October
4-7, 2015, Ethan L. Miller and Steven Hand (Eds.). ACM, 378–393. https://doi.org/10.1145/2815400.2815415

[30] OpenTelemetry. 2024. High-quality, ubiquitous, and portable telemetry to enable effective observability. Retrieved
August, 2024 from https://opentelemetry.io/

[31] OpenTelemetry. 2024. OpenTelemetry Traces. Retrieved July, 2024 from https://opentelemetry.io/docs/concepts/signals/
traces/#spans

[32] OpenTelemetry. 2024. OpenTelemetry Zero-code Instrumentation. Retrieved August, 2024 from https://opentelemetry.
io/docs/zero-code/

[33] OpenTelemetry. 2024. Trace Semantic Conventions. Retrieved October, 2024 from https://opentelemetry.io/docs/specs/
semconv/general/trace/

[34] OpenTelemetry. 2024. Vendor-agnostic way to receive, process and export telemetry data. Retrieved August, 2024 from
https://opentelemetry.io/docs/collector/

[35] Xin Peng, Chenxi Zhang, Zhongyuan Zhao, Akasaka Isami, Xiaofeng Guo, and Yunna Cui. 2022. Trace analysis based
microservice architecture measurement. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022,
Abhik Roychoudhury, Cristian Cadar, and Miryung Kim (Eds.). ACM, 1589–1599. https://doi.org/10.1145/3540250.
3558951

[36] Prometheus. 2024. Monitoring system & time series database. Retrieved August, 2024 from https://prometheus.io/
[37] Kirk Rodrigues, Yu Luo, and Ding Yuan. 2021. CLP: Efficient and Scalable Search on Compressed Text Logs. In 15th

USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021, July 14-16, 2021, Angela Demke
Brown and Jay R. Lorch (Eds.). USENIX Association, 183–198. https://www.usenix.org/conference/osdi21/presentation/
rodrigues

[38] Junxian Shen, Han Zhang, Yang Xiang, Xingang Shi, Xinrui Li, Yunxi Shen, Zijian Zhang, Yongxiang Wu, Xia Yin,
Jilong Wang, Mingwei Xu, Yahui Li, Jiping Yin, Jianchang Song, Zhuofeng Li, and Runjie Nie. 2023. Network-Centric
Distributed Tracing with DeepFlow: Troubleshooting Your Microservices in Zero Code. In Proceedings of the ACM
SIGCOMM 2023 Conference, ACM SIGCOMM 2023, New York, NY, USA, 10-14 September 2023, Henning Schulzrinne,
Vishal Misra, Eddie Kohler, and David A. Maltz (Eds.). ACM, 420–437. https://doi.org/10.1145/3603269.3604823

[39] Benjamin H Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,
and Chandan Shanbhag. 2010. Dapper, a large-scale distributed systems tracing infrastructure. (2010).

[40] Train Ticket. 2024. Train Ticket: A Benchmark Microservice System. Retrieved August, 2024 from https://github.com/
FudanSELab/train-ticket

[41] Kangjin Wang, Ying Li, Cheng Wang, Tong Jia, Kingsum Chow, Yang Wen, Yaoyong Dou, Guoyao Xu, Chuanjia Hou,
Jie Yao, and Liping Zhang. 2022. Characterizing Job Microarchitectural Profiles at Scale: Dataset and Analysis. In
Proceedings of the 51st International Conference on Parallel Processing, ICPP 2022, Bordeaux, France, 29 August 2022 - 1
September 2022. ACM, 47:1–47:11. https://doi.org/10.1145/3545008.3545026

[42] Rui Wang, Devin Gibson, Kirk Rodrigues, Yu Luo, Yun Zhang, Kaibo Wang, Yupeng Fu, Ting Chen, and Ding Yuan.
2024. uSlope: High Compression and Fast Search on Semi-Structured Logs. In 18th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 529–544. https://www.usenix.
org/conference/osdi24/presentation/wang-rui

[43] Junyu Wei, Guangyan Zhang, Yang Wang, Zhiwei Liu, Zhanyang Zhu, Junchao Chen, Tingtao Sun, and Qi Zhou. 2021.
On the Feasibility of Parser-based Log Compression in Large-Scale Cloud Systems. In 19th USENIX Conference on
File and Storage Technologies, FAST 2021, February 23-25, 2021, Marcos K. Aguilera and Gala Yadgar (Eds.). USENIX
Association, 249–262. https://www.usenix.org/conference/fast21/presentation/wei

[44] Yang Wu, Ang Chen, and Linh Thi Xuan Phan. 2019. Zeno: Diagnosing Performance Problems with Temporal
Provenance. In 16th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2019, Boston, MA,
February 26-28, 2019, Jay R. Lorch and Minlan Yu (Eds.). USENIX Association, 395–420. https://www.usenix.org/
conference/nsdi19/presentation/wu

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1109/ASE.2019.00085
https://doi.org/10.1109/ASE.2019.00085
https://locust.io/
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/2815400.2815415
https://opentelemetry.io/
https://opentelemetry.io/docs/concepts/signals/traces/#spans
https://opentelemetry.io/docs/concepts/signals/traces/#spans
https://opentelemetry.io/docs/zero-code/
https://opentelemetry.io/docs/zero-code/
https://opentelemetry.io/docs/specs/semconv/general/trace/
https://opentelemetry.io/docs/specs/semconv/general/trace/
https://opentelemetry.io/docs/collector/
https://doi.org/10.1145/3540250.3558951
https://doi.org/10.1145/3540250.3558951
https://prometheus.io/
https://www.usenix.org/conference/osdi21/presentation/rodrigues
https://www.usenix.org/conference/osdi21/presentation/rodrigues
https://doi.org/10.1145/3603269.3604823
https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://doi.org/10.1145/3545008.3545026
https://www.usenix.org/conference/osdi24/presentation/wang-rui
https://www.usenix.org/conference/osdi24/presentation/wang-rui
https://www.usenix.org/conference/fast21/presentation/wei
https://www.usenix.org/conference/nsdi19/presentation/wu
https://www.usenix.org/conference/nsdi19/presentation/wu

Tracezip: Efficient Distributed Tracing via Trace Compression 23

[45] Guangba Yu, Pengfei Chen, Hongyang Chen, Zijie Guan, Zicheng Huang, Linxiao Jing, Tianjun Weng, Xinmeng
Sun, and Xiaoyun Li. 2021. MicroRank: End-to-End Latency Issue Localization with Extended Spectrum Analysis
in Microservice Environments. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.). ACM / IW3C2, 3087–3098.
https://doi.org/10.1145/3442381.3449905

[46] Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. 2023. Nezha: Interpretable
Fine-Grained Root Causes Analysis for Microservices on Multi-modal Observability Data. In Proceedings of the 31st
ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023, Satish Chandra, Kelly Blincoe, and Paolo Tonella (Eds.).
ACM, 553–565. https://doi.org/10.1145/3611643.3616249

[47] Guangba Yu, Zicheng Huang, and Pengfei Chen. 2023. TraceRank: Abnormal service localization with dis-aggregated
end-to-end tracing data in cloud native systems. J. Softw. Evol. Process. 35, 10 (2023). https://doi.org/10.1002/SMR.2413

[48] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vigfusson, and Jonathan Mace. 2023. The Benefit of Hindsight: Tracing
Edge-Cases in Distributed Systems. In 20th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2023, Boston, MA, April 17-19, 2023, Mahesh Balakrishnan and Manya Ghobadi (Eds.). USENIX Association, 321–339.
https://www.usenix.org/conference/nsdi23/presentation/zhang-lei

[49] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek Parwal, Timothy Sherwood, and Milind Chabbi.
2022. CRISP: Critical Path Analysis of Large-Scale Microservice Architectures. In 2022 USENIX Annual Technical
Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13, 2022, Jiri Schindler and Noa Zilberman (Eds.). USENIX
Association, 655–672. https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou

[50] Zhenyu Zhong, Qiliang Fan, Jiacheng Zhang, Minghua Ma, Shenglin Zhang, Yongqian Sun, Qingwei Lin, Yuzhi Zhang,
and Dan Pei. 2023. A Survey of Time Series Anomaly Detection Methods in the AIOps Domain. CoRR abs/2308.00393
(2023). https://doi.org/10.48550/ARXIV.2308.00393 arXiv:2308.00393

[51] Tong Zhou, Chenxi Zhang, Xin Peng, Zhenghui Yan, Pairui Li, Jianming Liang, Haibing Zheng, Wujie Zheng, and
Yuetang Deng. 2023. TraceStream: Anomalous Service Localization based on Trace Stream Clustering with Online
Feedback. In 34th IEEE International Symposium on Software Reliability Engineering, ISSRE 2023, Florence, Italy, October
9-12, 2023. IEEE, 601–611. https://doi.org/10.1109/ISSRE59848.2023.00033

[52] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wenhai Li, and Dan Ding. 2021. Fault Analysis and Debugging of
Microservice Systems: Industrial Survey, Benchmark System, and Empirical Study. IEEE Trans. Software Eng. 47, 2
(2021), 243–260. https://doi.org/10.1109/TSE.2018.2887384

[53] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and Chuan He. 2019. Latent error prediction
and fault localization for microservice applications by learning from system trace logs. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra
Russo (Eds.). ACM, 683–694. https://doi.org/10.1145/3338906.3338961

[54] Zipkin. 2024. A distributed tracing system. Retrieved March, 2024 from https://zipkin.io/

, Vol. 1, No. 1, Article . Publication date: February 2024.

https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1145/3611643.3616249
https://doi.org/10.1002/SMR.2413
https://www.usenix.org/conference/nsdi23/presentation/zhang-lei
https://www.usenix.org/conference/atc22/presentation/zhang-zhizhou
https://doi.org/10.48550/ARXIV.2308.00393
https://arxiv.org/abs/2308.00393
https://doi.org/10.1109/ISSRE59848.2023.00033
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1145/3338906.3338961
https://zipkin.io/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Distributed Tracing
	2.2 A Study of the Redundancy in Trace Data

	3 Methodology
	3.1 Overview
	3.2 Span Format Conventions
	3.3 Span Retrieval Compression and Uncompression
	3.4 Optimizations for Span Retrieval Tree

	4 Implementation
	4.1 Search Acceleration by Hashing
	4.2 Differential Data Synchronization

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of Trace Compression
	5.3 Performance Overhead
	5.4 Threats to Validity

	6 Discussion
	7 Related Work
	7.1 Distributed Tracing Systems
	7.2 Trace-based System Management
	7.3 Trace Sampling and Compression

	8 Conclusion
	References

