
A Large-Scale Evaluation for Log Parsing Techniques: How Far
Are We?

Zhihan Jiang
The Chinese University of Hong Kong

Hong Kong, China
zhjiang@link.cuhk.edu.hk

Jinyang Liu
The Chinese University of Hong Kong

Hong Kong, China
jyliu@cse.cuhk.edu.hk

Junjie Huang
The Chinese University of Hong Kong

Hong Kong, China
junjayhuang@outlook.com

Yichen Li
The Chinese University of Hong Kong

Hong Kong, China
ycli21@cse.cuhk.edu.hk

Yintong Huo
The Chinese University of Hong Kong

Hong Kong, China
ythuo@cse.cuhk.edu.hk

Jiazhen Gu
The Chinese University of Hong Kong

Hong Kong, China
jiazhengu@cuhk.edu.hk

Zhuangbin Chen∗

Sun Yat-sen University
Zhuhai, China

chenzhb36@mail.sysu.edu.cn

Jieming Zhu
Huawei Noah’s Ark Lab

Shenzhen, China
jiemingzhu@ieee.org

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China
lyu@cse.cuhk.edu.hk

ABSTRACT

Log data have facilitated various tasks of software development

and maintenance, such as testing, debugging and diagnosing. Due

to the unstructured nature of logs, log parsing is typically required

to transform log messages into structured data for automated log

analysis. Given the abundance of log parsers that employ various

techniques, evaluating these tools to comprehend their character-

istics and performance becomes imperative. Loghub serves as a

commonly used dataset for benchmarking log parsers, but it suf-

fers from limited scale and representativeness, posing signi�cant

challenges for studies to comprehensively evaluate existing log

parsers or develop new methods. This limitation is particularly

pronounced when assessing these log parsers for production use.

To address these limitations, we provide a new collection of anno-

tated log datasets, denoted Loghub-2.0, which can better re�ect the

characteristics of log data in real-world software systems. Loghub-

2.0 comprises 14 datasets with an average of 3.6 million log lines

in each dataset. Based on Loghub-2.0, we conduct a thorough re-

evaluation of 15 state-of-the-art log parsers in a more rigorous

and practical setting. Particularly, we introduce a new evaluation

metric to mitigate the sensitivity of existing metrics to imbalanced

data distributions. We are also the �rst to investigate the granu-

lar performance of log parsers on logs that represent rare system

events, o�ering in-depth details for software diagnosis. Accurately

parsing such logs is essential, yet it remains a challenge. We be-

lieve this work could shed light on the evaluation and design of log

∗Zhuangbin Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3652123

parsers in practical settings, thereby facilitating their deployment

in production systems.

CCS CONCEPTS

• Software and its engineering→ Maintaining software.

KEYWORDS

benchmark, empirical study, log parsing, log analysis

ACM Reference Format:

Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen

Gu, Zhuangbin Chen, Jieming Zhu, and Michael R. Lyu. 2024. A Large-Scale

Evaluation for Log Parsing Techniques: How Far Are We?. In Proceedings

of the 33rd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3652123

1 INTRODUCTION

Log data records software runtime information, which is essential

for developers to understand the behaviors of software systems. The

rich information encapsulated within log data empowers develop-

ers and maintainers to test programs [4, 7, 8, 41], identify bugs [3, 6,

14, 59] and diagnose softwares [44–46]. In general, log messages are

semi-structured textual data, generated by logging statements writ-

ten by developers in the source code, e.g.,‘logger.info(“connected

to host: {}”, hostIp)’ in Java [29, 30, 33, 61]. At runtime, the vari-

able hostIpmay change in di�erent executions, which can result in

a sequence of log messages like ‘connected to host: 172.16.254.1’

and ‘connected to host: 172.16.254.2’. Log parsing aims to con-

vert such semi-structured log messages into structured events,

which often serves as the �rst and foremost step to many log anal-

ysis tasks [18, 27, 32, 37, 60]. Speci�cally, log parsing extracts the

constant parts (i.e., log templates) and the changeable parts (i.e., log

parameters) from log messages. In the above example, the log tem-

plate is ‘connected to host: <*>’, and the log parameter indicates

the concrete IP address of the host, e.g.,‘172.16.254.1’.

Traditional approaches parse logs via matching raw log mes-

sages with their respective logging statements within the source

223

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0003-1988-6219
https://orcid.org/0000-0003-0037-1912
https://orcid.org/0009-0004-6962-5292
https://orcid.org/0009-0009-8370-644X
https://orcid.org/0009-0006-8798-5667
https://orcid.org/0000-0002-5831-9474
https://orcid.org/0000-0001-5158-6716
https://orcid.org/0000-0002-5666-8320
https://orcid.org/0000-0002-3666-5798
https://doi.org/10.1145/3650212.3652123
https://doi.org/10.1145/3650212.3652123
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3652123&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

code [5, 47, 48, 50]. However, this approach is usually impracti-

cal since software source code may not always be available, e.g.,

commercial software. Thus, tremendous e�orts have been devoted

to data-driven approaches [17, 21, 23, 58]. These parsers directly

process raw log messages without access to the source code.

Given the variety of log parsers employing di�erent techniques,

it is crucial to evaluate these tools to comprehend their characteris-

tics and performance, providing guidance for production adoption

in industry. To this end, Zhu et al. [62] released Loghub, which con-

tains an extensive collection of log datasets generated by various

systems. However, Loghub only provides annotated parsing ground

truth for 2,000 lines of logs randomly sampled from each system, de-

noted as Loghub-2k, which has been extensively used to evaluate ex-

isting log parsers [25, 63] and develop new log parsers [9, 10, 31, 55].

Even though existing log parsers, such as Drain [17], Logram [9]

and LogPPT [28], have reported state-of-the-art results on the

Loghub-2k dataset, we observed that the parsing performance of

these tools is compromised when being integrated into real-world

software systems [15, 49]. Based on our experiences of deploying

automated log parsing in production, we have found that existing

parsers struggle to identify two types of log templates, i.e., infre-

quent log templates (those that occur infrequently) and parameter-

intensive log templates (those that involve many parameters). The

former usually includes logs with severe logging levels (e.g., error or

fatal), which typically demand more attention due to their potential

impact. The latter usually records the system runtime status and

associated values. These two types of log templates are crucial for

downstream analysis tasks, such as anomaly detection and debug-

ging. Therefore, it is essential to ensure parsing accuracy for such

log templates. However, the research results reported in previous

studies [25, 63] may not necessarily apply in practical production

settings, especially for these two types of log data.

This performance disparity primarily originates from three inher-

ent limitations in existing benchmark studies. First, the widely-used

Loghub-2k is of limited scale. It only encompasses 2,000 lines of log

messages in each dataset, whereas real-world data often consist of

millions of log lines [55, 56, 63]. As a result, the Loghub-2k may not

be able to su�ciently represent the complex characteristics of log

data obtained from production systems, particularly in terms of the

frequency and parameter count of log templates. Second, evaluation

metrics used in existing benchmarks (e.g., group accuracy, GA [63])

are often message-level (i.e., calculated based on the number of log

messages), thus may produce misleadingly high-accuracy results. It

is because the distribution of log templates’ occurrences is usually

highly imbalanced in production systems [25, 55]. The evaluation

results could be dominated by the majority classes of log templates

(i.e., those contain many log messages). Therefore, such metrics

may not be robust enough to datasets with diverse template distri-

butions. Third, existing studies often report the performance of log

parsers in processing the entire dataset. It is unclear how they per-

form when dealing with the above two types of log templates. The

lack of �ne-grained evaluation can lead to a limited understanding

of how well a log parser handles these speci�c cases in practice.

To address these limitations, we propose a new log parsing bench-

mark tailored to evaluate log parsers in a more rigorous and prac-

tical setting. Speci�cally, (1) On top of the raw Loghub logs [20],

we build a new version of large-scale annotated log datasets for log

parsing, denoted as Loghub-2.0. The annotation is conducted adher-

ing to a rigorous framework, which can signi�cantly reduce manual

e�orts through log grouping and template matching. Loghub-2.0

aims to re�ect the scale and distribution of log data observed in

real-world scenarios. In detail, Loghub-2.0 contains 14 datasets

from various software systems. Each dataset contains 3.6 million

lines of log messages on average. Each log line has been manually

annotated with its corresponding log template and parameter(s).

(2) We propose a more comprehensive benchmarking protocol to

evaluate existing log parsers. The protocol includes a new template-

level metric, i.e., F1-score of Group Accuracy (FGA), to mitigate the

sensitivity of the message-level metrics (e.g., GA) to imbalanced

data. Moreover, we make the �rst step to investigate the perfor-

mance of log parsers on log templates with di�erent frequencies

and parameter counts, providing an essential reference regarding

how well they would perform in production environments. (3) We

conduct an extensive re-evaluation of 15 log parsers, including 13

statistic-based and 2 semantic-based log parsers, on Loghub-2.0

using the proposed benchmarking protocol. Our study provides

researchers and practitioners with a more practical perspective on

understanding the characteristics of these parsers. We summarize

the key �ndings from the evaluation as follows.

Key Findings. (1) Compared with Loghub-2k, Loghub-2.0 ex-

hibits more realistic data characteristics, especially in the context

of log template frequencies and parameter counts. (2) All existing

parsers demonstrate a signi�cant degradation in performance on

Loghub-2.0 compared to the Loghub-2k, with a greater degree of

variance. This shows that our proposed datasets and benchmarking

protocol can reveal the performance of log parsers under more

complex and diverse conditions. (3) Achieving high overall per-

formance on the entire datasets does not necessarily guarantee

e�ective parsing of infrequent and parameter-intensive logs, which

often deserve more attention in system maintenance. Thus, a com-

prehensive evaluation should consider di�erent types of logs to

ensure robust and reliable performance in practice. (4) 9 out of

15 parsers fail to process all the datasets in Loghub-2.0 within a

reasonable time frame, highlighting the importance of improving

parsing e�ciency, especially for production deployment.

The main contributions of this paper are summarized as follows:

• We propose a new collection of large-scale datasets for evaluating

log parsing techniques, referred to as Loghub-2.0. This collection

comprises 14 datasets, each with an average of 3.6 million log

lines. The parsing labels of the log messages are manually anno-

tated through a rigorous annotation framework, which ensures

the e�ciency and accuracy of the labeling process. This is a sig-

ni�cant extension of the existing widely-used Loghub-2k, which

contains only 2,000 lines of log messages per dataset.

• We propose a more comprehensive benchmarking protocol for

log parsers, which emphasizes assessing parsing accuracy on logs

with di�erent characteristics. Moreover, a new template-level

metric, i.e., FGA, is proposed to address the sensitivity of existing

metrics to imbalanced data.

• We re-evaluate 15 state-of-the-art log parsers by our benchmark-

ing protocol and derive seven interesting �ndings, which could

shed light on the design and evaluation of log parsers in a more

practical setting. To bene�t future research, we make datasets,

source code, and experimental results publicly available [1].

224

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

2 BACKGROUND AND MOTIVATION

In this section, we �rst brie�y introduce existing log parsers in the

literature. Then, we talk about the observations that motivate us to

revisit existing log parsing studies.

2.1 Existing Log Parsing Techniques

Many log parsing approaches have been proposed in the literature,

mainly classi�ed into the following four categories.

Frequency-based Parsing This type of methods [9, 43, 53, 54]

is founded on the intuition that tokens, which frequently occur

within a speci�c log dataset, generally represent the static elements

of those logs. Consequently, the extraction of frequent patterns

provides a straightforward approach for automated log parsing.

In detail, these log parsers �rst traverse the provided log dataset

to construct frequent itemsets. Subsequently, these itemsets are

utilized to derive the corresponding log template for log messages.

Similarity-based Parsing These log parsers [13, 16, 42, 51, 52]

conceptualize log parsing as clustering logs into distinct clusters

predicated on their similarity, and logs in each cluster share the

same log template. Various methods employ di�erent clustering

algorithms (e.g., hierarchical clustering, density-based clustering)

and de�nitions of similarity. Following the clustering process, log

templates can be derived by extracting the common tokens from

the logs within each respective cluster.

Heuristics-based Parsing Another category of log parsers [11, 17,

24, 39, 40, 58] employs a diverse range of heuristic algorithms or

data structures, such as the longest common subsequence-based ap-

proach, parsing trees, evolutionary algorithm, among others. These

log parsers are designed to leverage the unique characteristics of log

data to distinguish the templates and parameters in log messages.

Semantic-based Parsing In recent years, numerous parsers [21,

28, 31, 35] have employed deep neural networks to understand

the semantic meaning of logs, thereby improving parsing accu-

racy. In detail, these log parsers employ supervised methodologies,

utilizing models such as bidirectional long short-term memory or

pre-trained language models to learn the semantic information of

log messages, thereby distinguishing between log templates and

parameters through the completion of classi�cation tasks.

2.2 Motivation

Given the fruitful log parsing studies, comprehensively evaluating

existing log parsers is crucial in understanding their characteristics

and guiding the selection of appropriate methods in practice. Zhu

et al. [63] proposed the �rst benchmark of 13 log parsers by collect-

ing multiple log datasets from various types of systems, including

distributed systems, supercomputer systems, etc. Particularly, they

randomly sampled 2,000 logmessages for each dataset andmanually

annotated the template for these logs. This results in the widely-

used collection of log parsing datasets, i.e., Loghub-2k. Many new

log parsing approaches [9, 28, 55] also evaluate their performance

on Loghub-2k and demonstrate promising results.

Despite the advantages of the dataset, we still observe some

inherent limitations associated with it. First, a recent study [25] has

pinpointed multiple errors in the annotated templates, which could

potentially impact the assessment of log parsers. Therefore, they

proposed several heuristic rules, such as regular expressions, to �x

the incorrect templates in Loghub-2k. Second, we �nd that these log

parsers demonstrate compromised e�ectiveness and e�ciency in

production deployment. This highlights the limitations of previous

benchmark studies, as they do not fully capture the comprehensive

performance of log parsers, especially in practical environments.

To understand the aforementioned limitations, we have conducted

a thorough investigation and identi�ed three primary reasons:

• Loghub-2k is small in scale, with each dataset comprising only

2,000 lines of log messages. Considering that real-world systems

often produce a large volume of log data (e.g., tens of gigabytes

per hour [19, 36, 55]), Loghub-2k may not be able to re�ect the di-

verse and complex characteristics of log data observed in produc-

tion environments. Given the data-driven nature of most existing

log parsers, their performance could be a�ected by the limited

scale of Loghub-2k and may not generalize well to real-world

scenarios with much larger and diverse log datasets. Moreover,

the annotation process of Loghub-2k does not follow a rigor-

ous and standardized approach, leading to potential errors and

inconsistencies in the annotated templates.

• Existing studies often lack a comprehensive set of metrics for

evaluation. Most of them only employ message-level metrics

such as group accuracy [63] and parsing accuracy [9]. Theo-

retically, these metrics tend to favor frequently occurring log

templates. For instance, if a simple template involves a large

number of log messages, then successfully parsing this template

would yield good performance, irrespective of the results on the

less frequent templates. In real-world scenarios, log data could

be highly imbalanced. For example, some systems periodically

print log messages to record routine information, such as system

heartbeats (“System uptime: 30 hours”). Such logs might not be

of interest to system operators. However, they could dominate

the overall performance, masking potential errors in processing

infrequent templates.

• The current evaluation of log parsers mainly reports the overall

performance on entire datasets. This approach, however, lacks a

�ne-grained analysis of parsing performance for logs with di�er-

ent characteristics. We have identi�ed two critical types of logs

that play an essential role in production system maintenance.

These include infrequent log templates, which represent rare

system events that require particular attention, and parameter-

intensive log templates, which provide informative details about

system status and the associated entities. Investigating the per-

formance on these logs helps understand the actual e�ectiveness

of log parsers in real-world applications.

To address these limitations, we propose conducting a new bench-

mark study for existing log parsers in a more rigorous and practical

setting. This entails the creation of a more diverse collection of log

parsing datasets that are substantially larger in scale, as well as the

design of a more comprehensive benchmarking protocol.

3 DATASET CONSTRUCTION

In this section, we introduce the construction process of the dataset

collection, which intends to re�ect the scale and characteristics of

real-world log data and thus enables an accurate assessment of log

parsers’ capabilities in practical scenarios. Particularly, we propose

a rigorous annotation framework designed to ensure the e�ciency,

accuracy and consistency of the labeling procedure.

225

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

ciod: LOGIN chdir(<*>) failed.

ciod: Error creating node map from file <*>.

{RAS KERNEL, INFO}

!#" !$" !%

Group1:

Group2:

Group3:

Template

Annotation

Log-Template

Matching

Group1:

{RAS BGLMASTER, INFO}

!&

Group2:

{RAS APP, FATAL}

!'" !(" !)

Group3:

Unmatched

logs

Log

Grouping

CE sym <*>, at <*>, mask <*>

BGLMaster started: ./BGLMaster --ip <*>RAS KERNEL

RAS KERNEL

RAS KERNEL

RAS BGLMASTER

RAS APP

RAS APP

RAS APP

INFO

INFO

INFO

INFO

FATAL

FATAL

FATAL

CE sym 0, at 85, mask 0

CE sym 10, at 58, mask 1

CE sym 23, at 64, mask 2

BGLMaster started: ./BGLMaster --ip 127.0.0.1

ciod: LOGIN chdir(/scratch/full) failed.

ciod: LOGIN chdir(/p/run/) failed.

ciod: Error creating node map from file

/p/gb2/sweep.map.

Component Level Content

!!"

!""

!#"

!$"

!%"

!&"

!'"

Preprocessing

Log File 2023-06-03 RAS KERNEL INFO CE sym 0, at 85, mask 0

2023-06-03 RAS KERNEL INFO CE sym 10, at 58, mask 1

…

Template

Refinement Discussion

Top-K frequent

tokens: {mask}

Top-K frequent

tokens: {started}

Top-K frequent

tokens: {coid}

(Sec. 3.2)

(Sec. 3.3)

(Sec. 3.4)

(Sec. 3.5)
(Sec. 3.6)

Figure 1: The overall framework of data annotation

3.1 Overview

To construct the datasets, we select 14 log datasets in Loghub [20]

that span di�erent types of systems, including distributed systems,

supercomputers, and operating systems. Although these datasets

are collected from various types of systems on a large scale, they

lack the essential labels for log parsing assessment. Thus, a neces-

sary preliminary step in our study is annotating these datasets.

The annotation process is carried out by a team of �ve skilled

data annotators. This team consists of three Ph.D. students with

a minimum of two years of experience in system maintenance re-

search, alongside two industry engineers, both of whom have at

least �ve years of experience in software development and man-

agement. Given the immense size of each dataset (e.g., millions of

log messages), manual labeling for each log message is infeasible.

Therefore, we design a rigorous annotation framework to assist the

annotation process, which guarantees both labeling e�ciency and

accuracy through log grouping and template matching.

Fig. 1 shows the overview of the annotation framework, which

includes �ve steps: preprocessing, log grouping, template annotation,

log-template matching, and template re�nement. To begin, we �rst

preprocess the raw logs to obtain meaningful log contents. Then,

we apply a hierarchical approach to coarsely partition the logs into

distinct groups. The logs sharing the same template are highly likely

to be divided into the same group, facilitating e�cient annotation

procedures. Within each group, all annotators carefully identify

all log templates. In this process, we arrange log messages within

each group in lexicographical order to place similar log messages

together, which enables us to quickly annotate all log templates

instead of labeling each log message. After the annotation, we

employ regular expressions to construct the matching between log

messages and the labeled log templates. If any log messages remain

unmatched, we review and rectify the templates, subsequently

repeating the matching process until all log messages are matched.

Finally, we conduct template re�nement to calibrate the results

of all annotators to ensure the accuracy and uniformity of the

annotations across all annotators and datasets. The details of each

step are explained as follows.

3.2 Preprocessing

Following previous work [17, 55, 63], we �rst apply prede�ned reg-

ular expressions to extract di�erent �elds of log messages. Typical

�elds include timestamp, logging level, component, and content.

We then undertake a cleaning process for the logs. This process

speci�cally targets logs whose content does not include any al-

phabetical characters, such as logs comprised solely of numerical

�gures or punctuation marks. Such logs are cleaned due to their

lack of parseable content. We also remove log lines with duplicate

content temporarily to reduce manual e�orts in the following steps.

3.3 Log Grouping

After the preprocessing stage, we are still facing a substantial num-

ber of log messages (e.g., millions of log messages in the HDFS

dataset), making it unfeasible to manually annotate each message.

Inspired by [34], we adopt a hierarchical approach to coarsely divide

log messages into multiple groups. Our goal is to group together

log messages sharing the same template, which enables us to la-

bel their template in one pass. To this end, we �rst partition logs

based on their logging level and component name, which are ex-

tracted during the preprocessing step. These two properties provide

a straightforward means to initially identify logs that belong to the

same template [34]. Second, we use more advanced information

to group logs, i.e., the most frequently occurring tokens of a log

message. Speci�cally, we employ delimiters such as spaces and

punctuation to tokenize each log message into multiple tokens and

calculate the frequency of each token in the dataset. For each log

message, we calculate the K most frequent tokens and then group

together those log messages that share the common top-K frequent

tokens. The underlying rationale is that the template part of log

messages remains stable, while the parameter part can dynamically

change during runtime. As a result, the most frequent K tokens in

log messages can e�ectively serve as robust evidence to determine

their belonging to the same group. The value of K for each dataset

has been determined based on their characteristics, with the value

ranging from one to three. Particularly, we maintain a collection of

stop words to be excluded from the top-K frequent tokens, ensuring

that these common words do not interfere with the grouping pro-

cess. In addition to the stop words provided by the Scipy library [2],

we have also manually added certain words to the collection, such

as root, true, etc. Finally, we obtain multiple coarse-grained groups

of log messages where the log messages in each group share the

same logging level, component, and top-K tokens.

3.4 Template Annotation

The objective of the log grouping step is to partition the logs into

coarse-grained groups, ensuring, as far as possible, that logs sharing

the same template are divided into the same group. Therefore, it

is possible that log messages with di�erent templates are grouped

together. To address this issue, we employ manual template anno-

tation to derive ground-truth log templates from each group.

To accelerate the manual annotation process, we sort the log mes-

sages within each group in lexicographical order to place similar

log messages together. Annotators can then quickly recognize the

226

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

templates of logs based on their structures and similarities. Conse-

quently, annotators are required to annotate only the ground-truth

log templates, eliminating the need for sequential labeling of each

log message. This approach is based on the observation that the

quantity of potential log templates is typically several orders of mag-

nitude smaller than the total number of log messages [25, 55, 63],

which renders manual labeling a feasible task.

In detail, all annotators conduct the manual annotation process

independently, whose individual results will be consolidated to

generate the �nal results (to be detailed in Sec. 3.6). To ensure the

accuracy and consistency of the annotation, we adhere to the pa-

rameter categories proposed by Li et al. [31] to determine whether

a token is a parameter. We also ask the annotators to apply the

same heuristic rules proposed by Khan et al. [25] to ensure a more

consistent template format, e.g., replace double spaces with a single

space. If a token is identi�ed as a parameter, we will replace it with

"<*>", and the static parts remain unchanged to form the corre-

sponding templates. Since similar log messages have been grouped

and sorted together, we can e�ciently bypass numerous log mes-

sages that evidently share the same template when handling each

group, and only the identi�ed templates are recorded. Finally, in

the rare cases where di�erent groups still share identical templates,

we compare the templates derived from di�erent groups, eliminate

duplicate templates, and merge some templates as necessary. This

procedure can eliminate potential errors in the log grouping step,

thereby ensuring the accuracy of the annotations.

3.5 Log-Template Matching

While we generate log templates in the manual annotation step,

we do not record the explicit matching between each log message

and its corresponding template. This is to avoid complicating the

annotation process, and later in the possible deduplication and

merging procedures, it could lead to ambiguous relations and chal-

lenges in maintaining clarity and accuracy. Instead, we resort to

the technique of regular expressions to automatically construct the

matching between logs and templates.

Speci�cally, we convert each template into a regular expression

by substituting "<*>" with "(.*)", which enables each parameter

position to match strings of any length. Subsequently, for each log

message, we attempt to match it against every log template, halting

when a match is found. Although this step requires pairwise match-

ing between a large number of log messages and log templates, it

can be completed within a reasonable time given that the number

of log templates is typically much smaller than the total count of

log messages (as shown in Table 1). We also further speed up this

matching process by implementing it in a parallel manner.

Additionally, in this matching process, one log message could

match multiple templates. For examples, two templates)1: "auth

failure; logname=<*> uid=<*> ruser=<*>" and)2: "auth failure;

logname=<*> uid=<*>" can exist in the same dataset. All log mes-

sages generated from template)1 can be matched by)2 since the

last <*> are allowed to match multiple tokens. To address this issue,

when a log message matches multiple regular expressions, we give

priority to the templates with longer static parts for annotation.

The intuition is that when two di�erent templates are capable of

matching the same log message, the template that can match more

non "<*>" characters suggests a higher probability that this log

message belongs to that particular template. In the rare cases where

the two are the same, we choose templates with fewer "<*>" to

generate more compact and simple templates. By applying this rule,

the log messages of)1 will be correctly matched with)1.

In instances where speci�c logmessages fail to match any regular

expression, we will revert to the template annotation step, carefully

review these log messages, make necessary template corrections,

and subsequently repeat the matching process. Ultimately, each

log message should successfully match one regular expression that

corresponds to its annotated template.

3.6 Template Re�nement

The last step is template re�nement, which aims to consolidate

all �ve annotators’ results and correct potential errors. After care-

fully comparing the templates from �ve annotators, we identify

the following inconsistent cases that occur most frequently. All

discrepancies are addressed through discussions to ensure accurate

and uniform annotation.

• One annotator may produce more templates than others. In this

case, it is possible that some of his annotated templates are too

speci�c. For example, some variables (e.g.,root/True/temp) are

incorrectly identi�ed as constant. We then regard such cases as

parameters following [25].

• The same template may have di�erent formats, e.g.,“1165 bytes

(1.13 KB) sent” may be labeled as “<*> bytes (<*> KB) sent”

or “<*> bytes <*> sent”. In this case, we chose the former one

to retain the original format of the log messages.

Additionally, we quantitatively assess the annotation consistency

of �ve annotators. This is measured by determining the proportion

of templates where the annotations of the �ve annotators are iden-

tical. The average consistency score across all datasets attains a

value of 0.926, indicating a high agreement in the annotation step.

Ultimately, all �ve annotators reached a consensus on all annotated

templates, which is then adopted as the �nal annotation.

3.7 Annotation Results

The data annotation process �nally produces a collection of large-

scale log paring datasets from diverse systems, named Loghub-

2.0. The detailed statistic of Loghub-2.0 is presented in Table 1.

Compared with Loghub-2k, the average number of annotated log

messages has seen a substantial increase, escalating by a factor of

1875, from 2,000 to 3,601,187. Furthermore, the average number of

annotated log templates has increased by 204.2%, from 81.9 to 249.1,

encompassing a broader range of templates. The large scale of the

new dataset collection, Loghub-2.0, enables detailed evaluations of

log parsing techniques, potentially exposing their performance in

more realistic and large-scale scenarios.

4 STUDY DESIGN

In this section, we introduce the design of our benchmark study for

log parsers. Based on the large scale and diversity of Loghub-2.0,

we aim to gain a more in-depth understanding of the log parsers’

e�ectiveness and suitability for real-world applications. To this end,

we �rst design three research questions to guide the study. Then,

we select a new set of metrics for comprehensive performance

assessment, which includes a new template-level metric that we

design and existing popular metrics. Finally, we elaborate on the

selected log parsers for evaluation and the experiment setup.

227

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

Table 1: Statistics of Loghub-2.0

System Dataset
Templates

(Loghub-2k)

Templates

(Loghub-2.0)

Annotated Logs

(Loghub-2.0)

Distributed
systems

Hadoop 114 236 179,993

HDFS 14 46 11,167,740

OpenStack 43 48 207,632

Spark 36 236 16,075,117

Zookeeper 50 89 74,273

Super-
computer
systems

BGL 120 320 4,631,261

HPC 46 74 429,987

Thunderbird 149 1,241 16,601,745

Operating
systems

Linux 118 338 23,921

Mac 341 626 100,314

Server
application

Apache 6 29 51,977

OpenSSH 27 38 638,946

Standalone
software

HealthApp 75 156 212,394

Proxi�er 8 11 21,320

Average 81.9 249.1 3,601,187

4.1 Research Question

RQ1:What are the di�erences betweenLoghub-2.0 and Loghub-

2k? In this RQ, we aim to explore whether there are signi�cant

di�erences in the characteristics of Loghub-2.0 and Loghub-2k,

which could potentially impact the performance of log parsers.

Speci�cally, We focus on examining two important characteristics:

frequencies of log templates and parameter counts in log templates.

RQ2: How does the performance of log parsers di�er when

applied to Loghub-2.0 compared to Loghub-2k? In this RQ,

our focus lies in conducting a comprehensive re-evaluation of log

parsers using Loghub-2.0, encompassing both e�ectiveness and e�-

ciency aspects. We also explore any potential limitations associated

with the widely-used Loghub-2k. To this end, we carefully compare

the evaluation results obtained from Loghub-2.0 with those from

Loghub-2k, enabling us to draw insightful conclusions.

RQ3: What is the performance of log parsers on logs with

varying characteristics? Inspired by our observations in Sec. 2.2,

we investigate the performance of log parsers on logs with di-

verse template frequencies and parameter counts. This is pivotal,

as certain logs with distinctive characteristics may hold signi�cant

importance in production environments. Particularly, such an eval-

uation becomes feasible only with the use of the labeled datasets in

Loghub-2.0, attributable to its large scale and diversity.

4.2 Evaluation Metrics

Weemploy two categories ofmetrics, i.e., message-level and template-

level metrics, to evaluate log parsers. Message-level metrics account

for the quantities of messages belonging to each template, thereby

favoring templates with a higher volume of log messages. On the

other hand, template-level metrics evenly consider each template, re-

gardless of the number of log messages each template corresponds

to. In our benchmark protocol, we adopt two message-level met-

rics i.e., Group Accuracy (GA) and Parsing Accuracy (PA) and two

template-level metrics i.e., F1-score of Group Accuracy (FGA) and

the F1-score of Template Accuracy (FTA) [25]. In particular, FGA,

proposed by us, is the template-level version of GA. Below, we

elaborate on the metrics used in our study.

4.2.1 Message-Level Metrics. Following existing studies, we utilize

two popular message-level metrics, i.e., GA and PA.

Group Accuracy (GA). GA is �rst used by Zhu et al. [63], which

assesses the ability to correctly group log messages belonging to

the same template. It is de�ned as the proportion of correctly grouped

log messages to the total number of log messages. A log message is

regarded as correctly grouped if and only if its template corresponds

to the same set of log messages as the ground truth does.

Parsing Accuracy (PA). PA utilized by Dai et al. [9] assesses the

ability to correctly extract the template parts and parameter parts

for each log message, which is essential for various log analysis

tasks, such as anomaly detection using parameter values [12, 22, 26].

It is de�ned as the ratio of correctly parsed log messages over the

total number of log messages, where a log message is considered to

be correctly parsed if and only if all tokens of static templates and

dynamic variables are correctly identi�ed.

4.2.2 Template-Level Metrics. Despite the wide use of message-

level metrics [31, 57, 58], they consider the number of log messages

and thus are sensitive to imbalanced templates. For example, in a

dataset where 95% of log messages belong to only 1% of the tem-

plates, a log parser could achieve a GA or PA of 0.95 by accurately

grouping or parsing these 1% of templates, regardless of any parsing

errors for the remaining 99% of templates. In practice, certain infre-

quently occurring templates, such as error-level log messages, may

hold crucial signi�cance, while frequently appearing templates, like

heartbeat messages, might be of less importance. Thus, template-

level metrics, which do not consider the number of log messages

of each template, should also be incorporated to comprehensively

evaluate the performance of log parsers.

F1-score of Group Accuracy (FGA). We propose FGA, which

focuses on the proportion of correctly grouped templates rather

than log messages. Thus, it can be considered as calculating GA at

the template level. Speci�cally, FGA is the harmonic mean of PGA

(Precision of Group Accuracy) and RGA (Recall of Group Accuracy).

Let #? be the number of templates that are generated by a log

parser, and #2 be the number of templates that are correctly parsed

by the log parser. The correctness here has the same de�nition as in

GA, i.e., a log template is considered as correctly parsed if and only

if the set of log messages belonging to this template matches the

set indicated in the ground truth. #6 is the actual correct number

of templates in the ground truth. Based on these notations, we can

de�ne PGA as #2

#?
and RGA as #2

#6
. Then, we can calculate FGA as

their harmonic mean, i.e., 2×%��×'��
%��+'��

F1-score of Template Accuracy (FTA). FTA is the harmonic

mean of RTA (Recall of Template Accuracy) and PTA (Precision of

Template Accuracy) proposed by Khan et al. [25]. FTA has a di�erent

de�nition of “correct identi�cation” from FGA, and we de�ne a new

notation #̂2 to represent the number of templates that are correctly

identi�ed by a log parser. For FTA, one template is regarded as

correctly identi�ed if and only if these two conditions hold: (1) the

parsed template’s corresponding set of log messages share the same

ground-truth template; (2) all the tokens of the template are the

same as those of the ground-truth template. Then, we can de�ne

PTA as #̂2

#?
and RTA as #̂2

#6
. And FTA can be calculated as their

harmonic mean, i.e., 2×%)�×')�
%)�+')� . FTA focuses more on the ability

to identify concrete constant and parameter parts for a particular

log message in comparison to FGA.

228

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

4.3 Evaluation Setup

For our evaluation, we carefully select 15 state-of-the-art log parsers

from the literature. Thirteen of them have been previously eval-

uated by Khan et al. [25]. Di�erent from their work, we exclude

LKE [13] from our evaluation, which involves the computation of

pair-wise distances, rendering it impractical for large-scale scenar-

ios. These log parsers are all statistic-based, using techniques that

are based on frequency (i.e., LFA [43], LogCluster [54], Logram [9],

SLCT [53]), similarity (i.e., LenMa [51], LogMine [16], LogSig [52]),

and heuristics (i.e., AEL [24], Drain [17], IPLoM [39], MoLFI [40],

SHISO [42], Spell [11]). For implementation, we directly reuse the

source codes released by previous work [25, 63]. Moreover, we

have incorporated two semantic-based log parsers, namely Uni-

Parser [35] and LogPPT [28], into our benchmarking study. We

implement the UniParser model following the details provided in

its corresponding paper and reuse the source code of LogPPT.

In our evaluation, we apply the same preprocessing rules (e.g.,

regular expressions) and �ne-tune the parameter settings through

multiple runs of each log parser. For log parsers that exhibit variabil-

ity in their parsing results due to inherent randomness, e.g., MoLFI

and LogPPT, we perform the evaluation �ve times. By reporting

the median result, we aim to mitigate potential biases arising from

such randomness and present a more reliable assessment of their

performance. All experiments were conducted on a server equipped

with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 256GB RAM,

and an NVIDIA GeForce GTX3090, running Ubuntu 16.04.7 LTS.

5 STUDY RESULTS

5.1 RQ1: Di�erences between Loghub-2.0 and
Loghub-2k

In this RQ, we aim to investigate the di�erence in data characteris-

tics between Loghub-2.0 and Loghub-2k. As previously indicated in

Table 1, Loghub-2.0 signi�cantly surpasses Loghub-2k in terms of

the sizes of log messages and templates, with approximately 1,900

times more messages and 3 times more templates on average. This

substantial increase might imply a signi�cant distinction in feature

distribution across these two dataset collections.

As discussed in Sec. 2.2, there are two pivotal characteristics

inherent to log datasets: the frequency of templates and the param-

eter count of templates. Speci�cally, the frequency of a log template

refers to the number of log messages belonging to a speci�c log

template. The parameter count of a log template is the number of

di�erent dynamic parts within each log template, i.e., the number

of "<*>" symbols in a log template. We calculate the distribution of

these two characteristics for each dataset in Loghub-2k and Loghub-

2.0, and plot the corresponding cumulative distribution function

diagrams. Due to space constraints, we only present three repre-

sentative datasets in Loghub-2.0, i.e., Spark, Linux, and OpenSSH.

The �gures for all 14 datasets are available at our repository [1].

The distribution of templates’ frequencies The �gures on the

left-hand side of Fig. 2 depict the distribution of template frequen-

cies across three datasets. On the one hand, Loghub-2.0 exhibits a

broader range of template frequencies, e.g., in Spark of Loghub-2.0,

the template frequencies range from 1 to over 106, while in the

Loghub-2k, the range is narrower, ranging from 1 to around 10
3.

On the other hand, the long-tail distribution of Loghub-2.0 is more

Figure 2: Distribution comparison of template frequencies

and parameter counts in Loghub-2.0 and Loghub-2k

pronounced than that of Loghub-2k, indicating more imbalanced

template frequencies. For example, in the Spark dataset of Loghub-

2.0, only 10% of the templates have frequencies exceeding 10
4, yet

these few templates constitute the majority of the logs.

The distribution of templates’ parameter counts The three

�gures on the right-hand side of Fig. 2 present the distribution

of templates’ parameter counts. We can observe that Loghub-2.0

covers a wider array of templates, each with a signi�cantly higher

number of parameters compared to those in Loghub-2k. For ex-

ample, the maximum number of parameters of Spark’s log tem-

plates is 3 in Loghub-2k. However, this number rises to 24 in the

case of Loghub-2.0. A similar trend is observed for both Linux and

OpenSSH, suggesting that Loghub-2.0 has more complex log tem-

plates. This complexity presents a greater challenge for a log parser

in accurately identifying an increased number of parameters.

Finding 1. The distributions of log template frequencies and pa-

rameter counts in Loghub-2k and Loghub-2.0 exhibit signi�cant

di�erences. Loghub-2.0, in particular, exhibits a more pronounced

imbalance in template frequencies. Additionally, Loghub-2.0 con-

tains a larger number of templates, and each has a larger parame-

ter count on average compared to those in Loghub-2k.

5.2 RQ2: Performance di�erences of log parsers
on Loghub-2.0 and Loghub-2k

Given the di�erences in characteristics observed between Loghub-

2k and Loghub-2.0 in RQ1, the potential impact of such di�erences

on the performance of log parsers remains unclear. To address this,

we apply the selected 15 log parsers to Loghub-2.0 and compare the

performance with Loghub-2k [25, 63] in terms of e�ectiveness and

e�ciency. Speci�cally, we apply the same experimental settings

(e.g., preprocessing and parameter tuning) described in Sec. 4.3 to all

the evaluated log parsers. To evaluate their e�ectiveness, we report

metrics including GA, PA, FGA, and FTA for both Loghub-2.0 and

Loghub-2k. Additionally, we record the parsing time for each parser,

229

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

which is measured from the beginning of loading log data to the

completion of parsing. Following existing work [25, 63], we set a

timeout of 12 hours. If a parser cannot �nish parsing a dataset within

this timeframe, we terminate the process and mark it as “timed out”.

Any parser that surpasses this time limit might not be suitable for

practical deployment in a production environment, which often

handles massive amounts of log data on a daily basis [38, 55, 63].

Due to the space limitation, interested readers can refer to our

repository [1] for more detailed evaluation results.

5.2.1 E�ectiveness. Fig. 3 presents a box plot illustrating the ef-

fectiveness of all log parsers on Loghub-2k and Loghub-2.0. Each

box encapsulates the distribution of experimental results across all

datasets in terms of a speci�c metric. In addition, we also denote

the number of datasets each log parser can �nish processing within

12 hours in the parentheses next to the parser’s name.

According to Fig. 3, we can make the following observations. (1)

For most log parsers, whether applied to Loghub-2k or Loghub-2.0,

the average FGA is typically lower than GA. This shows that FGA

is a more strict metric because it fairly treats all types of templates

without considering their frequencies. (2) When comparing GA

and FGA across Loghub-2k and Loghub-2.0, we can �nd that the

decrease of FGA in Loghub-2.0 is more obvious than that in Loghub-

2k. For example, for AEL, the discrepancy between the average GA

and FGA on Loghub-2k is about 0.1. However, on Loghub-2.0, this

value escalates to roughly 0.3. This indicates that the template

distribution in Loghub-2.0 is more imbalanced than Loghub-2k,

which validates our �nding in RQ1. (3) Similarly, FTA generally

decreases when compared with PA, either in the Loghub-2k or

Loghub-2.0, suggesting that PA is also dominated by major classes.

Finding 2. Message-level metrics, such as GA and PA, usually

produce higher evaluation results compared to template-level met-

rics like FGA and FTA, due to their sensitivity to imbalanced log

data. The di�erences between these metrics are more noticeable

in the large-scale Loghub-2.0, which displays greater imbalances.

In addition, it is obvious that the performance of all log parsers

across all metrics displays a signi�cant di�erence between the

Loghub-2k and Loghub-2.0. Speci�cally, (1)When comparing Loghub-

2k with the more imbalanced Loghub-2.0, we generally observe

an increase in PA (e.g., in AEL and Drain) and a slight decrease

in GA for most parsers (e.g., LenMA and LFA). This is attributed

to the fact that GA demands precise grouping of log messages be-

longing to the same templates, while PA is calculated based on the

accuracy of parsing individual log messages. The task of accurate

grouping becomes more challenging within the larger Loghub-2.0,

leading to a noticeable increase in PA and a slight decrease in GA

when using Loghub-2.0. (2) All log parsers display a signi�cant

drop in template-level metrics on Loghub-2.0 compared to their

performance on Loghub-2k. For instance, Drain, which achieves the

highest FGA metric on Loghub-2k, sees its average FGA score drop-

ping from 0.75 to approximately 0.55. Similarly, LogPPT, though

achieving the highest FTA on Loghub-2k, experiences a reduction

in its average FTA from roughly 0.64 to 0.5. (3) Furthermore, it is

noteworthy that the variances of the four metrics across di�erent

datasets for most log parsers (e.g., AEL, Drain, LenMa and LogMine)

have signi�cantly increased, visually represented by the expanded

range of the box plot. This implies that existing parsers struggle to

achieve consistent e�ectiveness across di�erent large-scale systems.

Finding 3. The evaluation results obtained on the Loghub-2k do

not consistently hold when the log parsers are applied to the large-

scale Loghub-2.0. On Loghub-2.0, existing parsers experience a

performance drop and an increase in the variance of all metrics.

Additionally, semantic-based log parsers, such as UniParser and

LogPPT, have consistently demonstrated notably higher PA and

FTA scores compared to other log parsers on both Loghub-2k and

Loghub-2.0 datasets. This suggests that semantic information can

facilitate accurately identifying the template of individual log mes-

sages. However, their GA and FGA scores are generally lower than

those of other log parsers. This can be attributed to their disregard

for global information, such as statistical frequency. As a result,

these parsers are more prone to categorizing logs from the same

templates into di�erent groups, leading to lower GA and FGA scores.

Furthermore, although semantic-based log parsers have achieved

commendable performance on Loghub-2k, the performance met-

rics also decrease dramatically when applied to Loghub-2.0. The

primary reason is that Loghub-2k contain too few log messages and

log templates, making it easy for these models to learn the features

of the entire dataset. For instance, in LogPPT, the default number

of prompts for tuning is 32, however, many datasets in Loghub-2k

have even fewer than 32 templates, resulting in LogPPT achieving

near-perfect accuracy on these datasets. In contrast, since the num-

ber of log messages and log templates in Loghub-2.0 signi�cantly

increases, it becomes challenging for these models to generalize to

more unseen log messages based on limited training samples.

Finding 4. Semantic-based log parsers are more capable of pars-

ing individual logs, evidenced by their higher PA and FTA. How-

ever, they exhibit lower grouping-related metrics, due to their

neglect of global information. Moreover, the performance of these

log parsers may decline on larger and more diverse datasets in

Loghub-2.0, particularly when the number of annotated samples

available for training is limited.

5.2.2 E�iciency. For the Loghub-2k, all log parsers can successfully

parse all 14 datasets. However, when these log parsers are applied

to the larger-scale datasets of Loghub-2.0, most of them (9 out of 15)

are unable to complete the parsing process for all 14 datasets within

12 hours. Due to the space limit, we have uploaded the detailed

time cost for each parser processing each dataset to our replication

repository [1]. As depicted in Fig. 3, only six parsers (i.e., Drain,

IPLoM, LFA, LogCluster, LogSig, UniParser, and LogPPT) success-

fully complete parsing on all 14 datasets of Loghub-2.0. Certain

parsers, such as LenMa and LogMine, despite demonstrating supe-

rior performance, are unable to process larger datasets e�ciently.

Considering the substantial demands for log parsing throughput in

real-world systems, e.g., millions of logs per hour [55], log parsers

that are unable to complete the parsing process within a reasonable

timeframe (i.e., 12 hours) may have limited applicability in practi-

cal scenarios. Moreover, semantic-based log parsers like LogPPT

require GPU computational resources. When computing with a

CPU, their time consumption is considerably higher compared to

230

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

Figure 3: The evaluation results of all log parsers on Loghub-2k and Loghub-2.0

other e�cient statistic-based log parsers like Drain. This potentially

hampers their adoption in scenarios with resource constraints.

Finding 5. 9 out of 15 log parsers are unable to process all 15

datasets of Loghub-2.0 within a reasonable 12-hour timeframe.

Moreover, semantic-based methods typically demand more com-

putational resources than statistic-based parsers.

5.3 RQ3: Performances of log parsers on logs
with di�erent characteristics

Previous studies [25, 63] typically report the overall performance of

log parsers on the entire full set of a dataset. However, this may not

fully characterize their e�ectiveness on logs with diverse charac-

teristics, especially those that demand more attention in real-world

system maintenance. To address this limitation, our benchmarking

study adopts a more granular approach by evaluating log parsers

on speci�c logs with varying characteristics. We primarily focus

on the characteristics of template frequency and parameter count.

In speci�c, log templates with a lower frequency often represent

rare events, hidden problems, and potential failures. Besides, log

templates with more parameters might be more informative to on-

site engineers for analysis. Thus, it is crucial to accurately parse

these two types of log messages.

To this end, we �rst apply log parsers to parse the entire dataset.

We then select subsets of logs with di�erent characteristics and

calculate the performance on each subset. This approach ensures

that the input data for each parser are consistent with that in RQ2,

instead of merely parsing the selected subset of logs. Due to the

space limitation, we only present the results of �ve representative

log parsers that are capable of parsing the majority of datasets in

Loghub-2.0. The complete results can be found in our repository [1].

5.3.1 Performance with di�erent template frequencies. As men-

tioned in RQ1, Loghub-2.0 exhibits a higher imbalance in template

frequencies. Considering the data-driven nature of log parsers, their

performance could be a�ected. Hence, we investigate the perfor-

mance on template frequencies by looking into the relative infre-

quent and frequent logs. In particular, we evaluate log parsers on

the templates with top and bottom k% frequencies, where k is set

as 5, 10, and 20, respectively. Then, we report the average scores of

these four metrics. Fig. 4 illustrates the results when k=10, while

the results for k=5 and 20 can be found in our repository [1].

As illustrated in Fig. 4, all log parsers exhibit worse GA and

FGA on frequent logs than on infrequent ones. Taking LogPPT as

an example, its GA and FGA scores approach 0.95 for infrequent

templates, while dropping below 0.5 for frequent ones. We explain

the performance drop as follows. Considering grouping accuracy

requires a parser to correctly group all logs that belong to a certain

template, the grouping will become more challenging as more log

messages should be included.

In contrast, all log parsers demonstrate lower average PA for

infrequently occurring log templates compared to frequent ones.

This is expected for statistic-based log parsers, as the less frequency

of a template provides less information and evidence (e.g., count

discrepancy between static and dynamic tokens) for the parser,

resulting in decreased parsing accuracy. For semantic-based log

parsers, such as LogPPT, which typically require a sample of logs for

training, the sampling process reduces the likelihood of selecting

infrequent templates. This, in turn, decreases the parsing accuracy

of infrequent templates compared to high-frequency templates.

Finding 6. Existing log parsers exhibit varying e�ectiveness

when dealing with templates of di�erent frequencies. They typi-

cally achieve lower GA and FGA for frequent templates, as the

grouping is more challenging for templates with more log mes-

sages. Besides, they achieve lower PA and FTA for infrequent

templates, as less evidence (e.g., training data) is available to

guide the accurate parsing of each log message.

5.3.2 Performance with di�erent parameter counts. Our study in

RQ1 demonstrates that parameter counts of templates can vary in

a large range (e.g., 0 to 25 for the Spark dataset). Therefore, we also

evaluate parsing e�ectiveness for templates with di�erent numbers

of parameters. To achieve this, we classify the logs in each dataset

within Loghub-2.0 into three categories based on their parameter

count: logs with no parameters, logs with one to four parameter

231

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

Figure 4: The evaluation results of log parsers on logs with di�erent frequencies

Figure 5: The evaluation results of log parsers on logs with di�erent parameter counts

count, and logs with �ve or more parameters. We then utilize the

same approach in Sec. 5.3.1 to calculate the average of four metrics

for each log parser on each category, respectively.

According to the results illustrated in Fig. 5, we can observe that

all log parsers exhibit a signi�cant decline across all four perfor-

mance metrics as the parameter counts increase. More speci�cally,

these parsers perform exceptionally well on logs without parame-

ters, signi�cantly surpassing their overall performance on all logs

as presented in Fig. 3. For example, Drain achieves an average

score exceeding 0.95 on all four metrics on logs without parameters,

much higher than overall performance on the complete set of logs.

When dealing with logs with more than �ve parameters, all log

parsers exhibit notably poor performance. For example, LogPPT

only attains an average FGA of 0.16, while the average FGA of other

methods does not surpass 0.03. This suggests that despite many

log parsers demonstrating relatively high performance on entire

datasets, their performance on logs with more parameters remains

less than satisfactory, potentially resulting in distracting parsing

errors in real-world applications.

Finding 7. Despite the high scores achieved by the log parsers

on the entire datasets, their parsing e�ectiveness remains unsat-

isfactory when dealing with parameter-intensive log templates.

5.4 Summary of all research questions

We can make the following summaries of all research questions:

(1) The proposed collection of large-scale datasets for log pars-

ing, Loghub-2.0, exhibits signi�cantly di�erent characteristics of

log data compared to the commonly used Loghub-2k. Loghub-2.0

presents greater challenges for existing log parsers due to its larger

scale and more complex characteristics. (2) Our evaluation results

indicate that Drain is the most performant parsers that are more ca-

pable of grouping log messages, as evidenced by the highest average

GA and FGA. On the other hand, semantic-based methods (e.g., Uni-

Parser and LogPPT) exhibit stronger abilities in distinguishing each

token as either constant or dynamic parts. However, these meth-

ods compromise their e�ectiveness in grouping log messages with

the same templates. This is because classi�cation errors in tokens

can easily lead to incomplete groups. (3) Despite the encouraging

results shown in the Loghub-2k, the parsing performance remains

unsatisfactory when applied to Loghub-2.0. This is particularly

noticeable when parsing infrequent logs and parameter-intensive

logs. (4) Moreover, the e�ciency of the majority of log parsers fails

to meet the demands of large-scale application scenarios.

6 DISCUSSION

6.1 Implications

Based on our �ndings, we have identi�ed the following implications,

which we believe could bene�t future research on log parsing.

Consider both levels of metrics in combination.While most

existing tasks utilize message-level metrics such as GA and PA to

assess performance, these measures are often dominated by log

templates with high frequencies in large-scale application scenarios,

thereby yielding higher scores. In contrast, template-level metrics

are resistant to the imbalanced frequencies of templates and thus

can accurately re�ect the parsing performance on datasets with

diverse template distributions. Hence, these two types of metrics

may be contemplated in conjunction, and one can be prioritized

over the other based on speci�c requirements. For instance, if the

focus is more on the parsing accuracy of frequent log templates and

one can tolerate errors in infrequent templates, then message-level

metrics are more appropriate, and vice versa.

Evaluate the performance across logs with di�erent charac-

teristics. Although certain log parsers have exhibited high overall

performance on speci�c datasets, their parsing performance is still

lacking when handling infrequent and parameter-intensive log tem-

plates. Considering the importance of these logs, as underscored in

Section 2.2, it is crucial to concentrate speci�cally on performance

within these logs. The evaluation protocol we propose can unearth

the performance of log parsers on these log templates more com-

prehensively. Consequently, future work should pay attention to

this aspect when designing new log parsers, thereby enhancing

their applicability in real-world scenarios.

Place greater emphasis on e�ciency. As discussed in Sec. 5.2.2,

many existing log parsers fail to meet the performance require-

ments of large-scale application scenarios, a fact not represented

in Loghub-2k. Considering the large volume of logs in practical

232

A Large-Scale Evaluation for Log Parsing Techniques: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

settings, it is imperative that future log parsers are designed to meet

the performance demands of speci�c applications.

Try to combine semantic and statistical information. Accord-

ing to �nding 4, semantic-based log parsers possess superior ca-

pabilities in distinguishing parameters from templates, which also

substantiates the signi�cance of semantic information in the process

of log parsing. However, their grouping abilities are compromised

due to the neglect of global information. This is inevitable, given

that these log parsers exclusively process each log message in iso-

lation. A potential avenue for future research could involve the

combination of semantic and statistical information in logs, thereby

simultaneously enhancing the parsing and grouping capabilities.

6.2 Threats to Validity

Annotation errors The primary threat of this study is the potential

annotation errors in Loghub-2.0, which is inevitable without the

source code. To mitigate this issue as much as possible, we have

designed a stringent annotation framework with a team comprising

�ve members with signi�cant experience in log analysis research.

Limited log parsers The selection of log parsers is limited, as not

all existing log parsers are open-sourced due to industry con�den-

tiality reasons [55]. Nevertheless, the selected parsers have included

state-of-the-art log parsers published at top-tier conferences and

covered all existing categories of technology. Furthermore, we have

made our dataset available and implemented our benchmark proto-

col in a uni�ed and user-friendly manner. This allows for the easy

comparison of additional log parsers with existing ones.

Implementation and settings To mitigate the bias of implemen-

tation and settings, we have adopted the source code of several log

parsers from the widely-used benchmark [28, 63]. For the newly

incorporated log parsers, we have either used the source code pro-

vided by the original authors or carefully replicated them to ensure

the �delity of the results. Additionally, we have tuned the parame-

ters of each log parser to optimize the results.

7 CONCLUSION

In this paper, we conduct a more rigorous and practical large-scale

evaluation for log parsing techniques. We propose a log template

annotation framework that ensures both e�ciency and accuracy,

and have annotated a new collection of large-scale datasets for log

parsing, which more accurately re�ects the scale and distribution of

log data in real-world situations. Our proposed benchmarking pro-

tocol, inclusive of a new template-level metric and an evaluation of

the performance of log parsers on logs with varying characteristics,

o�ers a more comprehensive and in-depth analysis of log parsers’

performance. Furthermore, our re-evaluation of selected log parsers

using Loghub-2.0 uncovers valuable �ndings of the limitations of

existing log parsers and benchmarks. We believe that our work,

together with the open-source dataset Loghub-2.0 and benchmark,

could bene�t future research in the �eld of log analysis.

ACKNOWLEDGMENT

The work described in this paper was supported by the Research

Grants Council of the Hong Kong Special Administrative Region,

China (No. CUHK 14206921 of the General Research Fund). We

extend our sincere gratitude to the anonymous reviewers for their

constructive feedback.

REFERENCES
[1] 2023. The replication repository of our evaluation artifacts. https://github.com/

logpai/Loghub-2.0 [Online; accessed 1 Dec 2023].
[2] 2023. Scipy. https://scipy.org/ [Online; accessed 1 July 2023].
[3] Anunay Amar and Peter C Rigby. 2019. Mining historical test logs to predict bugs

and localize faults in the test logs. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 140–151.

[4] James H Andrews. 1998. Testing using log �le analysis: tools, methods, and
issues. In Proceedings 13th IEEE International Conference on Automated Software
Engineering (Cat. No. 98EX239). IEEE, 157–166.

[5] Vincent Bushong, Russell Sanders, Jacob Curtis, Mark Du, Tomas Cerny, Karel
Frajtak, Miroslav Bures, Pavel Tisnovsky, and Dongwan Shin. 2020. On matching
log analysis to source code: A systematic mapping study. In Proceedings of the
International Conference on Research in Adaptive and Convergent Systems. 181–
187.

[6] An Ran Chen, Tse-Hsun Chen, and Shaowei Wang. 2021. Pathidea: Improving
information retrieval-based bug localization by re-constructing execution paths
using logs. IEEE Transactions on Software Engineering (TSE) 48, 8 (2021), 2905–
2919.

[7] Boyuan Chen, Jian Song, Peng Xu, Xing Hu, and Zhen Ming Jiang. 2018. An
automated approach to estimating code coverage measures via execution logs. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. 305–316.

[8] Zhichao Chen, Junjie Chen, Weijing Wang, Jianyi Zhou, Meng Wang, Xiang
Chen, Shan Zhou, and Jianmin Wang. 2023. Exploring better black-Box test case
prioritization via log analysis. ACM Transactions on Software Engineering and
Methodology 32, 3 (2023), 1–32.

[9] Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: E�cient Log Parsing Using = n-Gram Dictionaries. IEEE Transactions
on Software Engineering (TSE) 48, 3 (2020), 879–892.

[10] Hetong Dai, Yiming Tang, Heng Li, and Weiyi Shang. 2023. PILAR: Studying and
Mitigating the In�uence of Con�gurations on Log Parsing. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 818–829.

[11] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[12] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[13] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining (ICDM). IEEE, 149–158.

[14] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin,
Dongmei Zhang, and Tao Xie. 2014. Where do developers log? an empirical
study on logging practices in industry. In Companion Proceedings of the 36th
International Conference on Software Engineering. 24–33.

[15] Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan
Yang. 2022. Investigating and improving log parsing in practice. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (FSE). 1566–1577.

[16] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (CIKM). 1573–1582.

[17] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with �xed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[18] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
computing surveys (CSUR) 54, 6 (2021), 1–37.

[19] Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li, Yu Kang, Minghua Ma, Yining
Wei, Yingnong Dang, Saravanakumar Rajmohan, et al. 2022. An empirical study of
log analysis at Microsoft. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(FSE). 1465–1476.

[20] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2020. Loghub: A large
collection of system log datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448 (2020).

[21] Yintong Huo, Yuxin Su, Cheryl Lee, and Michael R Lyu. 2021. Semparser: A
semantic parser for log analysis. arXiv preprint arXiv:2112.12636 (2021).

[22] Tong Jia, Lin Yang, Pengfei Chen, Ying Li, Fanjing Meng, and Jingmin Xu. 2017.
Logsed: Anomaly diagnosis through mining time-weighted control �ow graph
in logs. In 2017 IEEE 10th International Conference on Cloud Computing (CLOUD).
IEEE, 447–455.

233

https://github.com/logpai/Loghub-2.0
https://github.com/logpai/Loghub-2.0
https://scipy.org/

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhihan Jiang, et al.

[23] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, and Michael R Lyu. 2023. Llmparser: A llm-based log
parsing framework. arXiv preprint arXiv:2310.01796 (2023).

[24] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora, and Gilbert Hamann. 2008.
Abstracting execution logs to execution events for enterprise applications (short
paper). In 2008 The Eighth International Conference on Quality Software. IEEE,
181–186.

[25] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2022.
Guidelines for assessing the accuracy of log message template identi�cation tech-
niques. In Proceedings of the 44th International Conference on Software Engineering
(ICSE). 1095–1106.

[26] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2023.
Impact of Log Parsing on Log-based Anomaly Detection. arXiv preprint
arXiv:2305.15897 (2023).

[27] Van-Hoang Le and Hongyu Zhang. 2022. Log-based anomaly detection with
deep learning: How far are we?. In Proceedings of the 44th international conference
on software engineering (ICSE). 1356–1367.

[28] Van-Hoang Le and Hongyu Zhang. 2023. Log Parsing with Prompt-based Few-
shot Learning. arXiv preprint arXiv:2302.07435 (2023).

[29] Yichen Li, Yintong Huo, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, and
Michael R Lyu. 2023. Exploring the E�ectiveness of LLMs in Automated Logging
Generation: An Empirical Study. arXiv preprint arXiv:2307.05950 (2023).

[30] Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu, Junjie Huang,
Jiazhen Gu, Pinjia He, andMichael R Lyu. 2024. Go Static: Contextualized Logging
Statement Generation. arXiv preprint arXiv:2402.12958 (2024).

[31] Zhenhao Li, Chuan Luo, Tse-Hsun Chen, Weiyi Shang, Shilin He, Qingwei Lin,
and Dongmei Zhang. 2023. Did We Miss Something Important? Studying and
Exploring Variable-Aware Log Abstraction. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE).

[32] Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin
Chen, Cong Feng, Minzhi Yan, and Michael R Lyu. 2023. Scalable and Adap-
tive Log-based Anomaly Detection with Expert in the Loop. arXiv preprint
arXiv:2306.05032 (2023).

[33] Jiahao Liu, Jun Zeng, Xiang Wang, Kaihang Ji, and Zhenkai Liang. 2022. Tell: log
level suggestions via modeling multi-level code block information. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). 27–38.

[34] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin Zheng, and Michael R
Lyu. 2019. Logzip: Extracting hidden structures via iterative clustering for log
compression. In 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 863–873.

[35] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. Uniparser: A uni�ed log
parser for heterogeneous log data. In Proceedings of the ACM Web Conference
2022 (WWW). 1893–1901.

[36] Steven Locke, Heng Li, Tse-Hsun Peter Chen, Weiyi Shang, and Wei Liu. 2021.
LogAssist: Assisting log analysis through log summarization. IEEE Transactions
on Software Engineering (TSE) 48, 9 (2021), 3227–3241.

[37] JunchenMa, Yang Liu, HongjieWan, and Guozi Sun. 2023. Automatic Parsing and
Utilization of System Log Features in Log Analysis: A Survey. Applied Sciences
13, 8 (2023), 4930.

[38] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang, Gabriela
Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and Somesh Jha.
2018. {Kernel-Supported}{Cost-E�ective} Audit Logging for Causality Tracking.
In 2018 USENIX Annual Technical Conference (USENIX ATC). 241–254.

[39] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2009.
Clustering event logs using iterative partitioning. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD).
1255–1264.

[40] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identi�ca-
tion of log message formats. In Proceedings of the 26th Conference on Program
Comprehension. 167–177.

[41] Salma Messaoudi, Donghwan Shin, Annibale Panichella, Domenico Bianculli, and
Lionel C Briand. 2021. Log-based slicing for system-level test cases. In Proceedings
of the 30th ACM SIGSOFT international symposium on software testing and analysis
(ISSTA). 517–528.

[42] Masayoshi Mizutani. 2013. Incremental mining of system log format. In 2013
IEEE International Conference on Services Computing. IEEE, 595–602.

[43] Meiyappan Nagappan and Mladen A Vouk. 2010. Abstracting log lines to log
event types for mining software system logs. In 2010 7th IEEE Working Conference

on Mining Software Repositories (MSR). IEEE, 114–117.
[44] Meiyappan Nagappan, Kesheng Wu, and Mladen A Vouk. 2009. E�ciently

extracting operational pro�les from execution logs using su�x arrays. In 2009
20th International Symposium on Software Reliability Engineering. IEEE, 41–50.

[45] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured compara-
tive analysis of systems logs to diagnose performance problems. In 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12). 353–366.

[46] Paolo Notaro, Soroush Haeri, Jorge Cardoso, and Michael Gerndt. 2023. LogRule:
E�cient Structured Log Mining for Root Cause Analysis. IEEE Transactions on
Network and Service Management (2023).

[47] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry practices and event logging: Assessment of a critical software
development process. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering (ICSE), Vol. 2. IEEE, 169–178.

[48] Daan Schipper, Maurício Aniche, and Arie van Deursen. 2019. Tracing back
log data to its log statement: from research to practice. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, 545–549.

[49] Issam Sedki, Abdelwahab Hamou-Lhadj, Otmane Ait-Mohamed, and Naser Ezzati-
Jivan. 2023. Towards a Classi�cation of Log Parsing Errors. In 2023 IEEE/ACM
31st International Conference on Program Comprehension (ICPC). IEEE, 84–88.

[50] Weiyi Shang. 2012. Bridging the divide between software developers and op-
erators using logs. In 2012 34th international conference on software engineering
(ICSE). IEEE, 1583–1586.

[51] Keiichi Shima. 2016. Length matters: Clustering system log messages using
length of words. arXiv preprint arXiv:1611.03213 (2016).

[52] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating sys-
tem events from raw textual logs. In Proceedings of the 20th ACM international
conference on Information and knowledge management (CIKM). 785–794.

[53] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM)(IEEE Cat. No. 03EX764). Ieee, 119–126.

[54] Risto Vaarandi and Mauno Pihelgas. 2015. Logcluster-a data clustering and
pattern mining algorithm for event logs. In 2015 11th International conference on
network and service management (CNSM). IEEE, 1–7.

[55] Xuheng Wang, Xu Zhang, Liqun Li, Shilin He, Hongyu Zhang, Yudong Liu,
Lingling Zheng, Yu Kang, Qingwei Lin, Yingnong Dang, et al. 2022. SPINE: a
scalable log parser with feedback guidance. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE). 1198–1208.

[56] Kundi Yao, Mohammed Sayagh, Weiyi Shang, and Ahmed E Hassan. 2021. Im-
proving state-of-the-art compression techniques for log management tools. IEEE
Transactions on Software Engineering (TSE) 48, 8 (2021), 2748–2760.

[57] Siyu Yu, Ningjiang Chen, YifanWu, andWensheng Dou. 2023. Self-supervised log
parsing using semantic contribution di�erence. Journal of Systems and Software
200 (2023), 111646.

[58] Siyu Yu, Pinjia He, Ningjiang Chen, and Yifan Wu. 2023. Brain: Log Parsing
with Bidirectional Parallel Tree. IEEE Transactions on Services Computing (TSC)
(2023).

[59] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. Sherlog: error diagnosis by connecting clues from run-time logs.
In Proceedings of the �fteenth International Conference on Architectural support
for programming languages and operating systems. 143–154.

[60] Tianzhu Zhang, Han Qiu, Gabriele Castellano, Myriana Rifai, Chung Shue Chen,
and Fabio Pianese. 2023. System Log Parsing: A Survey. IEEE Transactions on
Knowledge and Data Engineering (TKDE) (2023).

[61] Chen Zhi, Jianwei Yin, Shuiguang Deng, Maoxin Ye, Min Fu, and Tao Xie. 2019.
An exploratory study of logging con�guration practice in java. In 2019 IEEE
international conference on software maintenance and evolution (ICSME). IEEE,
459–469.

[62] Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and Michael R Lyu. 2023. Loghub:
A large collection of system log datasets for ai-driven log analytics. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
355–366.

[63] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121–130.

Received 14-DEC-2023; accepted 2024-03-02

234

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Existing Log Parsing Techniques
	2.2 Motivation

	3 Dataset Construction
	3.1 Overview
	3.2 Preprocessing
	3.3 Log Grouping
	3.4 Template Annotation
	3.5 Log-Template Matching
	3.6 Template Refinement
	3.7 Annotation Results

	4 Study Design
	4.1 Research Question
	4.2 Evaluation Metrics
	4.3 Evaluation Setup

	5 Study Results
	5.1 RQ1: Differences between nmand Loghub-2k
	5.2 RQ2: Performance differences of log parsers on nmand Loghub-2k
	5.3 RQ3: Performances of log parsers on logs with different characteristics
	5.4 Summary of all research questions

	6 Discussion
	6.1 Implications
	6.2 Threats to Validity

	7 Conclusion
	References

