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Abstract—A common practice in the reliability engineering
of cloud services involves the collection of monitoring metrics,
followed by comprehensive analysis to identify performance
issues. However, existing methods often fall short of detecting
diverse and evolving anomalies across different services. More-
over, there exists a significant gap between the technical and
business interpretation of anomalies, i.e., a detected anomaly
may not have an actual impact on system performance or user
experience. To address these challenges, we propose ADAMAS, an
adaptive AutoML-based anomaly detection framework aiming to
achieve practical anomaly detection in production cloud systems.
To improve the ability to detect cross-service anomalies, we
design a novel unsupervised evaluation function to facilitate
the automatic searching of the optimal model structure and
parameters. ADAMAS also contains a lightweight human-in-the-
loop design, which can efficiently incorporate expert knowledge
to adapt to the evolving anomaly patterns and bridge the gap
between predicted anomalies and actual business exceptions. Fur-
thermore, through monitoring the rate of mispredicted anomalies,
ADAMAS proactively re-configures the optimal model, forming
a continuous loop of system improvement. Extensive evaluation
on one public and two industrial datasets shows that ADAMAS
outperforms all baseline models with a 0.891 F1-score. The
ablation study also proves the effectiveness of the evaluation
function design and the incorporation of expert knowledge.

Index Terms—AutoML, Cloud System Reliability, Domain
Knowledge, Cloud Service Systems

I. INTRODUCTION

In recent years, many traditional software systems have been
migrated to cloud computing platforms, which are managed
effectively as cloud services. They serve hundreds of millions
of users around the world on a 24/7 basis [1], [2], [3]. Due
to their increasing scale and complexity, performance issues
become inevitable [4], [5]. A common practice of reliability
engineering involves the gathering of system monitoring met-
rics, also known as Key Performance Indicators (KPIs), from
software and hardware components (e.g., virtual machines
and network devices). The collected data are then analyzed
to identify any potential performance issues [6], [7], [8].
However, the overwhelming volume of monitoring metrics [9]
in modern cloud services render manual performance analysis
infeasible [10]. As a result, many automated anomaly detection
methods have been proposed [11], [12], [7], [13], aiming
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at revealing the unusual patterns of the metrics that reflect
potential performance anomalies.

Modern service technologies, e.g., microservices and server-
less functions, decouple software into sophisticated and fine-
grained units [14]. Thus, cloud services tend to exhibit great
diversity and dynamism not only in functionalities but also
in anomaly patterns [15]. This situation poses two significant
challenges for practical anomaly detection in production sys-
tems. First, it is difficult for a single method to effectively
identify the entire spectrum of anomalies across different
services, i.e., the No Free Lunch Theorem [16], [17], [18].
For example, Fig. 1 presents two metrics with performance
anomalies from a Virtual Private Cloud (VPC) service and an
Elastic Load Balancing (ELB) service. A prevalent approach to
anomaly detection involves first learning the normal pattern of
a metric time series and then identifying anomalies when data
points deviate from this established norm [17], [19]. While
this strategy can work well in the first example, it may not be
as effective for anomalies that violate time series periodicity,
as illustrated in the second example, where the magnitude of
deviation is not prominent. On the other hand, approaches [20],
[21] that leverage the periodicity for anomaly detection face a
different dilemma. The second challenge is related to the data-
driven nature of anomaly detection. Existing approaches obtain
the best model based on the experimental datasets. However,
an anomaly detected on a technical level might not necessarily
translate to a performance issue that impacts the overall
business performance or customer experience. Consequently,
engineers need to deal with a lot of false positives. Due to
the frequent service updates and user behavior changes, the
anomaly patterns of services may evolve accordingly, i.e.,
concept drift [22], which further compounds the problem.

While efforts have been devoted to addressing these chal-
lenges, they suffer from important limitations that hinder their
practical applications. For instance, [23], [24] employ the tech-
nique of Automated Machine Learning (AutoML) to prevent
designing service-specific anomaly detection solutions [25],
[26]. However, existing AutoML-based approaches often re-
quire a considerable amount of labeled data or cannot properly
evaluate the model performance, hindering the search for the
optimal model architecture and parameters. In real-world sys-
tems, obtaining sufficient labeled data for each cloud service



(a) Network Interrupt Anomaly in VPC Service (b) Packets Loss Anomaly in ELB Service

Fig. 1. Examples of anomaly patterns of different services in cloud company X

is often challenging [27]. On the other hand, the human-in-
the-loop mechanism [28], [29] has been proven effective in
incorporating domain knowledge to mitigate the gap between
the predicted anomalies and the actual business exceptions.
However, existing approaches heavily rely on human expertise
to provide high-quality feedback, which impacts the scalability
and efficiency. Simply using limited feedback data to retrain
the models can hardly guarantee performance.

In this paper, we propose ADAMAS (Adaptive Domain-
Aware Performance Anomaly detection for cloud Services
Systems), an AutoML-based anomaly detection framework
adaptive to different cloud services with diverse and evolving
abnormal patterns. Specifically, ADAMAS consists of two
stages, i.e., a Label-free Configuration Search stage and a
Feedback-based Adaptive Learning stage. In the first stage,
ADAMAS employs Bayesian Optimization [30] to automat-
ically search the best model architecture with parameters
for anomaly detection. During the search, ADAMAS utilizes
the proposed Noise-Free Mean squared error with Kurtosis
(NFMK) evaluation function to estimate model performance
without labels. In the second stage, ADAMAS adopts a
lightweight, adaptive learning approach to efficiently incor-
porate expert knowledge. Specifically, during online serving,
engineers can provide feedback on whether the detected
anomaly is a false positive. Given the manually labeled data,
ADAMAS employs Metric Stream Clustering (MSC) to group
similar anomalous patterns into clusters and leverage historical
feedback to identify true performance issues or false positives,
significantly reducing the feedback required. To close the
loop of continuous service updates, ADAMAS triggers model
retraining when the cumulative mispredicted samples exceed
a threshold. In this process, the domain knowledge introduced
by human feedback will guide the configuration search.

To evaluate the performance of ADAMAS, we conduct ex-
tensive experiments on one public and two industrial datasets.
The results demonstrate that ADAMAS outperforms all base-
lines with an F1-score of 0.891. An ablation study demon-
strates that compared to other evaluation functions, NFMK
is more effective, and the MSC design can help ADAMAS
achieve better performance with less feedback. A case study
further shows how ADAMAS works in industrial cloud sys-
tems. To sum up, our main contributions are as follows:
• We design and implement ADAMAS, a domain-aware

AutoML-based anomaly detection framework. It addresses

two practical challenges in this field, namely, the diverse
anomaly patterns across different services and the gap
between the predicted anomalies and the actual performance
issues. It eliminates the dependency on labels in the model
searching process and significantly reduces the amount of
human feedback for expert knowledge integration.

• We conduct extensive experiments with public data as well
as industrial data collected from Company X . Furthermore,
our framework has been successfully incorporated into X ’s
performance monitoring and anomaly detection system.

II. BACKGROUND

In this section, we first introduce some background about
metric-based performance anomaly detection in modern cloud
systems. An example from an industrial scenario that motivates
this work is also present. Then, we give a brief introduction
to the general workflow of AutoML.

A. Performance Anomaly Detection in Cloud Service Systems

In modern cloud service systems, software reliability engi-
neers (SREs) usually collect a large number of metrics that
track the health status of the services (e.g., CPU utilization,
memory usage and network traffic) with monitoring tools
like Grafana, Splunk, etc. [31]. Monitoring metrics provide
the most granular information, which can be used to derive
other types of cloud monitoring data. For example, alerts
are usually triggered when metrics cross a threshold defined
by the engineers [32]. In cloud systems, there are usually
redundant components that provide fault tolerance and self-
healing [7] capabilities. Thus, most of the service outages
manifest themselves as performance anomalies (also known
as fail-slow failures [33], [34]) before fail-stop failures, which
can be detected through analysis of monitoring metrics. Pre-
vious studies [35], [7] have demonstrated that performance
anomalies of similar types tend to trigger similar symptoms on
the monitoring metrics. Thus, a particular type of performance
anomaly can be characterized as an anomaly pattern.

However, we observe that not all anomaly patterns manifest
in monitoring metrics are true performance anomalies. An
industrial example from Cloud Company X is shown in
Fig. 2, where the traffic of a load balancer in the Relational
Database Service (RDS) is monitored. In the red area, the
metric suddenly dips to nearly zero. It persists until system
maintainers replace the network devices with new ones, which



Fig. 2. An Motivating Example from Company X
is confirmed as a network interrupt failure. In the green area, as
load balancers can handle unpredictable traffic surges [36] by
scaling up the hardware and software resources, the service can
recover from a burst of requests due to its auto-scaling feature
without manual intervention in the green area. Thus, this
anomaly pattern is not a true anomaly because the fluctuating
requests are expected behaviors. Due to the recurring nature of
performance anomaly and failures [37], these false positives
can bring meaningless trouble to engineers if not properly
handled. A natural solution is to automatically differentiate
the types of performance anomalies and determine the true
anomaly by considering the context of the specific service.

B. Automated Machine Learning
In a large-scale cloud system, there are many services with

different anomaly patterns that need different configurations to
achieve optimal performance. Though there are many on-hand
anomaly detection methods, in software reliability engineers’
view, an “out of the box” tool is more desired. Automated
Machine Learning (AutoML), the process that makes machine
learning easier by avoiding tedious manual hyperparameter
tuning for both machine learning experts and non-experts,
provides great benefits to cloud system operators. Typically,
AutoML can be formulated as a Combined Algorithm Selec-
tion and Hyper-parameter (CASH) problem [38].

A general AutoML workflow is shown in Fig. 3. The op-
timizer fetches model configurations based on a search space
and the observations from the evaluator. Next, the evaluator
measures the model trained with configuration passed from the
optimizer on some objective functions, and the observation is
used to update the optimizer. The model configuration refers
to both the model selection and model hyperparameters. After
several iterations, the model that achieves the best performance
will be output as the output model.

There are extensive studies on AutoML that are dedicated
to improving the efficiency and the effectiveness of the op-
timizer [39], [40], [41], [42]. However, to the best of our
knowledge, none of the existing AutoML methods possess
the merit of domain knowledge that plays a critical role in
differentiating true anomalies and false positives. Furthermore,
existing AutoML frameworks lack the adaptability to new
anomaly patterns in online services, which hinders their ap-
plication in dynamic, evolving cloud systems.

III. METHODOLOGY

In this section, we present ADAMAS, which is a Bayesian
Optimization-based approach for identifying performance is-

Fig. 3. A General Overview of AutoML

sues based on monitoring metrics in cloud systems. First, we
will give a formal definition of the problem. Then, we give
the overview of ADAMAS. We illustrate the core design of
ADAMAS in detail in the remaining sub-sections. We use the
term metrics in two different contexts. To avoid confusion, we
use monitoring metrics to refer to the collected time series that
quantifies the health status of cloud systems, e.g., CPU usage.
While evaluation metrics refer to the indicators measuring the
quality of anomaly detection models, i.e., the F1 score.

A. Problem Formulation

The objective of our work is to detect performance anoma-
lies in software systems, especially large-scale cloud systems
with monitoring metrics. Specifically, a monitoring metric can
be seen as a time series X ∈ Rn = [x1, x2, ..., xn], where n
denotes the number of observations collected, i.e., the length of
a time series. Typically, a sliding window of historical values
X l

t = [xt−l+1, xt−l+2, ..., xt] is used for modeling current
observation, where l is the length of the sliding window. Our
goal is to determine whether or not the given observation X l

t is
anomalous, i.e., whether there is an occurrence of performance
issues at the observation.

An AutoML framework typically contains several models
with parameters. Given the set of monitoring metrics anomaly
detection model M = {m1,m2, ...,mk}, the set of parameter
search space θi = {θi1, θi1, ..., θini

}, we call the combination of
a model m with parameter θ as a configuration c ∈ C. With the
objective function L(m, θ,X) that evaluates the performance
of configurations, the goal of AutoML is to find the optimal
configuration c∗ as follows:

c∗ = argmax
c∈C

L(c;X) (1)

Normalization is performed on each monitoring metric to
unify the range of them and improve the robustness of our
method. We normalize the monitoring metrics with the Min-
max normalization first.

B. Overview

The overall architecture of ADAMAS is shown in Fig. 4,
which consists of two phases, namely, label-free configuration
search and feedback-based adaptive learning. In the con-
figuration search phase, we apply Bayesian Optimization, a
widely-used AutoML technique, to iteratively search for new
configurations and update the belief over the search space
with the evaluation performance of the configuration. Bayesian
Optimization typically consists of three main components: sur-
rogate model, objective function, and acquisition function [43].
In our framework, the surrogate model that represents the



Fig. 4. An Overview of Proposed Framework ADAMAS

estimated belief of performance over the observed configu-
rations is the most widely used Gaussian Process (GP) [44].
The objective function is utilized to evaluate the performance
of configurations. In cloud systems, performance anomaly
detection based on monitoring metrics is usually unsupervised
due to the lack of high-quality labels. Thus, an objective
function that approximates the performance without labels is
needed. To this end, we propose the NFMK objective function,
which is an excellent approximation of the F1 score compared
with other MSE-based objective functions. The acquisition
function is used to search for the next configuration to observe
with the exploration-exploitation trade-off. In our case, we
deploy the commonly used max-value entropy Search, an ac-
quisition function with a fast convergence rate. The initialized
configuration can be either from the optimal configurations of
the same service, which serves as a warm start of BO-based
search, or random configurations.

In the Feedback-based Adaptive Learning phase, we lever-
age the output model from the search phase to detect anomalies
in a scenario where monitoring metrics arrive in streams,
i.e., one instance at a time. To fill in the gap that many
predicted anomalies are not true anomalies and reduce the
number of false positives, we incorporate expert knowledge
with human feedback from on-site engineers when an anomaly
happens. However, the human effort will be unaffordable if
each anomaly alert is checked manually; we try to solve this
with a streaming metrics cluster method MSC. In this way,
the historical feedback from a similar anomaly pattern can
be leveraged, which prevents additional labeling by engineers.
Moreover, when the false positive exceeds a threshold, a
retraining and configuration search will be triggered to make
our framework adaptive to the system change.

C. Label-free Configuration Search

Generally, an AutoML framework trains different models
with different parameters to search for the best configuration.
Before the search process, the framework randomly selects
the initial models and hyperparameters as the cold start due
to the lack of prior knowledge about the monitoring metrics.
If there exist explored optimal configurations from metrics in
the same service, these configurations can serve as a warm
start [45] as anomaly patterns in the monitoring metrics of the
same service are similar. After obtaining the configurations,
the objective function will evaluate the performance of the

current configuration, and the surrogate model (GP in our
case) updates the belief over the search space. We design
an objective function, Noise-Free Mean squared error with
Kurtosis (NFMK), that serves as an excellent approximation
to evaluation functions like the F1 score without labels. This is
because, in the case of metrics anomaly detection, performance
anomalies are rare, and the labels are hard to obtain, which
prohibits the exact evaluation of labels like the F1 score.

1) Objective Function: The idea of approximating an
evaluation function with ground truth is based on a basic
property of anomaly. If a monitoring metric segment cannot
be reconstructed well by the model, it is more likely to be
an anomaly [46]. Specifically, by using Mean Squared Error
(MSE), we can evaluate the reconstruction ability of a model.
However, collecting anomaly-free metric data is challenging
and requires tedious manual efforts. So, the training data
often contains noises, which manifest large errors in the MSE
between the original and reconstructed monitoring metrics. To
ensure the model can differentiate potential anomalies from
normal patterns, we use the difference in kurtosis before
and after noise removal. This helps measure the model’s
sensitivity to noise and its ability to discern outliers. Based
on this observation, we try to capture the noise (e.g., some
mild performance anomaly ignored by engineers [4]) and
calculate the MSE of the noise-free part. To make the noise
part that potentially represents performance anomalies more
distinguishable, we computed the difference in kurtosis before
and after removing the noise. Specifically, as an effective
estimator that measures the distance between the predicted and
the raw monitoring metrics, MSE can be written as follows:

MSE(X, X̂) =

n∑
i=1

∥Xi − X̂i∥2

n
(2)

where X and X̂ are raw and reconstructed monitoring
metrics, respectively, and the length of the metric data is n, Xi

and X̂i are the raw and reconstructed sliding windows at the
i-th point. Given an anomaly ratio r estimated by engineers
according to historical observation, a threshold α is the r
quantile of reconstruction error in each point. The points that
exceed the threshold α are considered noise, while others are
normal. The noise indicator At can be written as follows:

At =

{
1, |Xt − X̂t| ≥ α,

0, |Xt − X̂t| < α.
(3)



Typically, a good anomaly detection method can fit the
pattern that represents the normal behavior of monitoring
metrics. Suppose the noise-free part of monitoring metric X is
represented as XN (XN = {Xt|At = 1}), then the MSE term
without noise data is MSE(XN , X̂N ). When a model has a
strong ability to differentiate anomalies from normal patterns,
the objective function should change significantly after noise
removal. This is based on the assumption that a higher kurtosis
corresponds to greater fluctuation, indicating the presence of
anomalies. Thus, if a model is proficient in anomaly detection
and the original kurtosis is large, there will be a dramatic
drop in kurtosis after the noise is removed. In contrast, if the
data has a small kurtosis, this suggests fewer outliers. In such
cases, both the kurtosis before and after noise removal would
be small, and the MSE term dominates the objective function.
This encourages the model to fit the monitoring metric well.
The formulation of kurtosis is as follows:

Kurt(X) =
1
n

∑n
i=1(Xi − X̄)4

( 1n
∑n

i=1(Xi − X̄)2)2
(4)

Note that we take the reciprocal of the kurtosis part to make
it unified with the MSE part. This way, we derive NFMK as
our objective function and minimize it to search for the optimal
configuration. The NFMK function in our framework is:

NFMK(X, X̂) =MSE(XN , X̂N ) + (Kurt(X − X̂)

−Kurt(XN − X̂N ))−1
(5)

2) Acquisition Function: The acquisition function is the
utility function that guides the selection of the next config-
uration that should be explored to reach the optimum of the
objective function [47]. Among many acquisition functions,
entropy search-based acquisition functions [48], [49], [50]
motivated by information theory are proven to achieve a fast
convergence rate that dramatically improves the efficiency of
the adaptive learning process [51]. In our framework, we apply
the Max-value Entropy Search (MES) [52] as the acquisition
function. MES uses the information about the maximum value
of objective function y∗ = L(c∗, X) at optimal configuration
c∗, where the gain in mutual information between the maxi-
mum y∗ and the next configuration can be approximated by
evaluating the entropy of the predictive distribution as follows:
MES(c) = H(p(y|Dt, c))− E(H(p(y|Dt, c, y

∗)))

≈ 1

K

∑
y∗∈Y ∗

γy∗(c)ϕ(γy∗(c))

2Φ(γy∗(c))
− log Φ(γy∗(c)) (6)

γy∗(c) =
y∗ − µt(c)

σt(c)
(7)

where Dt represents the observations until the i-th iteration,
H denotes the entropy, ϕ is the probability density function
and Φ is the cumulative density function of normal distribu-
tion. In the first term of Equation 6, the mean and variance
of p(y|Dt, c) are µt(c) and σt(c). The expectation of the
second term in Equation 6 is approximated using Monte Carlo
methods through sampling a set of K function maxima Y ∗,
where the sampling is from an approximation via a Gumbel
distribution.

D. Feedback-based Adaptive Learning

After the configuration search phase, an optimal model will
be applied to detect performance anomalies in online scenarios
where monitoring metrics arrive in streams. However, there are
inevitably many false positives as some anomaly patterns on
monitoring metrics are not considered performance anomalies.
It is difficult for the offline model to discriminate these false
positives from true performance anomalies without domain
knowledge from system experts. To this end, we propose to
incorporate the knowledge of experts through human-in-the-
loop to facilitate the anomaly detection process. It has been
a common practice in cloud systems that on-call engineers
manually verify every reported suspicious anomaly to mitigate
the problem [9], [53]. Though the precision of the performance
anomaly detection model can be tremendously improved with
human feedback, the human effort devoted to labeling is non-
negligible, especially in large-scale cloud systems that collect
thousands of monitoring metrics on the fly. We observe that
similar types of performance anomalies tend to trigger similar
patterns on the monitoring metric, similar to [35], [7]. A
straightforward idea is clustering similar anomaly patterns into
one cluster and leveraging the feedback on historically similar
patterns. In this way, the engineers only need to label the
anomaly patterns in a cluster once.

Since the monitoring metrics are generated in a streaming
manner, overwhelming data can exceed storage capacities,
making clustering methods that require full data unsuitable [7].
Thus, we have no access to all metric patterns, unlike of-
fline clustering approaches. We propose a streaming metrics
clustering method, Metric Stream Clustering (MSC), that con-
tinuously clusters all incoming anomalous metric segments.
Particularly, MSC is presented in Algorithm 1. First of all,
noise in the NFMK term containing potential performance
anomalies can be utilized to construct initialized clusters,
which is denoted as X0 for ease of presentation. We ap-
ply DBSCAN [54], a widely-used density-based clustering
algorithm [55] to construct the initialized clusters. The mean
vectors, cluster sizes, and radii are denoted as µ0, S0, R0.
Our core idea of metric stream clustering is that given a new
metric segment Xt, we determine whether it can be attributed
to an existing known anomaly cluster. The cluster will include
Xt as an element and then update its parameters. Otherwise,
a new anomaly cluster containing Xt itself will be created,
an unseen metric pattern that on-site engineers should label.
Particularly, we search for the index of the closest cluster idxt

and check whether the distance between the mean vector of the
cluster and the metric pattern is smaller than the radius of the
cluster. If yes, Xt will be considered a member of cluster idxt.
Otherwise, a new cluster containing Xt with a small radius δ
represents the unseen pattern. When a new anomaly pattern
is absorbed, the cluster’s attributes should be updated. The
mean vector and cluster size can be updated straightforwardly
through the formulation in lines 11-12. However, the radius
cannot be directly calculated as only the attributes of clusters
are retained, which is common practice in online learning.



Algorithm 1 Metric Stream Clustering
Input: X0, Xt, µt, St and Rt // Metrics and parameters of

clusters
Output: µt+1, St+1 and Rt+1 // Updated parameters

1: if t=0 then
2: // Initialization Phase
3: µ0, S0, R0 ←DBSCAN(X0)
4: else
5: // Continuous Clustering Phase
6: µt+1, St+1, Rt+1 ← µt, St, Rt

7: Dt ← PairWiseDistance(Xt, µt)
8: idxt ← MinIndex(Dt)
9: if Dt[idxt] < Rt[idxt] then

10: // Add Xt to the nearest cluster and update parame-
ters

11: µt+1[idxt]← (µ[idxt]×St[idxt] +Xt)/(St[idxt] +
1)

12: St+1[idxt]← St[idxt] + 1
13: Rt+1[idxt]← |µt+1[idxt]− µt[idxt]|/2 +Rt[idxt]
14: else
15: // A new cluster is created
16: µt+1 ← Append µt with Xt

17: St+1 ← Append St with 1
18: Rt+1 ← Append Rt with δ // A small radius will be

assigned to new cluster
19: end if
20: end if
21: return µt+1, St+1 and Rt+1

We estimate it by analyzing the best and worst case of the
radius update. On the one hand, the best case can be trivially
derived in that the radius remained unchanged at Rt[idxt].
On the other hand, the worst case is shown in Fig. 5, where
the new radius reaches its maximum value when Xt lies on
the opposite side of the cluster center µt with respect to the
furthest point that yields the radius Rt, resulting in the largest
radius update. We update the radius with the mean of the best
and worst case, shown in line 13.

With the proposed clustering method MSC, we can seam-
lessly integrate valuable feedback from on-site engineers to
ADAMAS. Specifically, when the offline model identifies an
unseen suspicious anomaly pattern, it issues a query to cloud
experts for confirmation. It should be noted that the number
of suspicious anomalies is far less than the number of all
metric streams. Moreover, the expert is only required to label
once for an anomalous cluster, where all the patterns are
considered anomalous if there is an element that is labeled as
anomalous in the cluster. This further drastically reduces the
required human effort. Consequently, the number of queries
to experts is considerably lower compared to the total amount
of metrics data, making our solution highly feasible and
scalable. A problem with our strategy of incorporating human-
in-the-loop is that though overwhelming false positives can
be alleviated, the offline model remains unchanged and can
not adapt to the evolving metric patterns. We try to solve
this problem by setting an engineer-specified threshold that

Fig. 5. The Worst Case of Cluster Radius Update

when the false positive clusters exceed it, a model retraining
will be triggered. Only when many accumulated false positives
cannot be properly differentiated by offline models should we
make our model adaptive to these patterns through retraining;
otherwise, the offline model works well toward a satisfactory
performance. In this way, the computation cost that the regular
retraining adopted by most frameworks consumes is signif-
icantly reduced. Specifically, we can take the incorporated
domain knowledge to guide the configuration search process
through the following objective function:

NFMK(X ′, X̂ ′) =MSE(X ′
N , X̂ ′

N ) + (Kurt(X ′ − X̂ ′)

−Kurt(X ′
N − X̂ ′

N ))−1

(8)

where X ′ and X̂ ′ represent the raw and reconstructed
online monitoring metric segments. X̂ ′

N represents the normal
patterns not identified as anomalies and the false positives,
which is a bit different from Equation 5. The new model is
updated through training on the X ′ and selecting based on
the objective function. It should be noted that X ′ represents
the most recent metric segments as past metric segments are
discarded due to the overwhelming volume of metrics.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of ADAMAS
using both a publicly available dataset and real-world monitor-
ing metrics datasets collected from large-scale cloud systems
in X , a world-leading cloud company. In particular, we aim
to answer the following research questions (RQs).
• RQ1: What is the effectiveness of ADAMAS compared with

other baselines?
• RQ2: What is the effectiveness of each component in

ADAMAS?
• RQ3: What is the sensitivity of ADAMAS to each hyper-

parameter?

A. Experiment Settings

1) Datasets: To evaluate the effectiveness of ADAMAS,
we conduct experiments on a public dataset and two industrial
datasets collected from large-scale cloud systems in Company
X , which confirm its practical significance. The statistics of
the datasets are summarized in Table I.

Public dataset. The AIOps18 dataset was released by an in-
ternational AIOps competition in 2018, composed of multiple



TABLE I
STATISTICS OF ALL DATASETS

Dataset #Metrics #Points #Ratio

AIOps18 29 5922913 2.26%

Industry A 506 5100480 4.67%

Industry B 535 5392800 3.46%

monitoring metrics collected from the web services of large-
scale IT companies. Particularly, the dataset contains service
metrics and machine metrics. The service metrics record the
performance of the services, e.g., response time and traffic,
while the machine metrics reflect the health state of physical
machines, including CPU usage and network throughput.

Industrial dataset. To fully evaluate the effectiveness in
real-world production scenarios, we collect monitoring metrics
from various services (e.g., VPC, ELB, and RDS) in two
availability zones (AZs) of a global cloud service provider
X . These metrics, including the service CPU usage, NIC
throughput, received packets of load balancers, etc., closely
monitor the health status of services. For each of these metrics,
we collect one week of data with a sampling interval of
one minute. We rely on the corresponding issue reports of
performance anomalies, which contain the start and end times
of problems identified by on-site engineers or customers of an
online service, to label the data.

2) Implementation: We implement four widely used metric
performance anomaly detection methods by cloud system
operators in our ADAMAS framework. Table II shows the
details of the algorithms and hyperparameters. We run all the
experiments on a Linux server with Intel Xeon Gold 6140
CPU @ 2.30GHZ and Tesla V100 PCIe GPU. The proposed
model is implemented under the PyTorch and BoTorch [56]
framework and runs on the GPU. The value of γ corresponds
to the NFMK function and is set to 0.98, and the value of δ
in MSC is 0.01. Due to the policy of company X , we will
release our data upon acceptance. Both the artifacts and data
are available on https://github.com/WenweiGu/ADAMAS.

3) Evaluation Metrics: The anomaly detection problem is
modeled as a binary classification problem, so the widely used
binary classification measurements can be applied to evaluate
the models. We employ Precision: PC = TP

TP+FP , Recall:
RC = TP

TP+FN , F1 score: F1 = 2 · PC·RC
PC+RC . Specifically,

TP is the number of abnormal samples the model correctly
discovered; FP is the number of normal samples incorrectly
classified as anomalies; FN is the number of anomalous
samples that failed to be detected by the model. F1 score
is the harmonic mean of the precision and recall, which
symmetrically represents both precision and recall in a metric.

In real-world applications, anomalies will last for a while,
leading to consecutive anomalies in the monitoring metrics.
Therefore, it is acceptable for the model to trigger an alert
for any point in a contiguous anomaly segment if the delay
is within the acceptable range. Thus, we adopt the widely
used evaluation strategy following [11], [46], [57], [58], [24].
In practice, different monitoring metrics have varying sam-

TABLE II
IMPLEMENTED ALGORITHMS AND THEIR HYPERPARAMETERS

Algorithm Parameters Range

Autoencoder
encoding dimension 10∼50
hidden dimension 100∼200
decoding dimension 100∼200

VAE hidden dimension 20∼200
latent dimension 10∼50

LSTM hidden dimension 50∼200

Transformer
hidden dimension 20∼500
head number 1∼8
layer number 1∼6

Common
window length 100∼300
batch size 128∼2048
learning rate 1−5 ∼ 1−2

pling frequencies, ranging from milliseconds (e.g., latency) to
minutes (e.g., average load). Hence, to handle metrics with
different sampling intervals, we use the number of timestamps
rather than a fixed time interval. Particularly, the range is set
to 10 timestamps based on the experiences of engineers.

B. RQ1: The Effectiveness of ADAMAS

To study the effectiveness of ADAMAS, we compare its
performance with various state-of-the-art baselines on a public
dataset and two industrial datasets collected from industry.
These baselines include (1) Traditional machine learning-
based approaches, isolation forest (IForest) [59] and ADS-
ketch [7]; (2) Deep learning-based approaches, DAGMM [60],
VAE [11], LSTM [12], [61], SCRNN [20] and Maat [13];
(3) AutoML-based approaches, Hyperband [39], AutoAD [23]
and AutoKAD [24]. For a fair comparison, the models and
the hyperparameter space of the Hyperband, AutoAD, and
AutoKAD are the same as ADAMAS.

The results are shown in Table III, where the best F1 scores
are marked with boldface. We can see the average F1 score of
ADAMAS outperforms all baseline methods in three datasets.
We observe that the improvement of effectiveness achieved
by ADAMAS is more significant in two industrial datasets,
especially on precision. This is because modern large-scale
cloud systems widely employ microservices architectures [62]
and possess the ability of fault tolerance and self-healing [63],
and some anomalies manifested in monitoring metrics can
be mitigated without intervention, which is not considered as
performance anomalies. Based on a random sampling of 100
metrics from the datasets, software reliability engineers manu-
ally analyzed these samples and determined that 28.7% of the
anomalies were data anomalies but not business anomalies.
These data anomalies are non-negligible due to their potential
to generate a significant number of false positives, which may
distract the SREs. Through seamlessly incorporating human
feedback, ADAMAS drastically reduces the false positives
that waste the human effort of engineers. We also notice
that though ADAMAS achieves near-perfect precision in both
industrial datasets, there exists a few false positives in the
AIOps18 dataset. The reason is that we apply MSC in order
to reduce the effort of human labeling, which assigns all the

https://github.com/WenweiGu/ADAMAS


TABLE III
EXPERIMENTAL RESULTS OF DIFFERENT ANOMALY DETECTION METHODS

Methods AIOps18 Dataset A Dataset B
Precision Recall F1 Precision Recall F1 Precision Recall F1

IForest 0.581 0.467 0.517 0.483 0.787 0.541 0.445 0.802 0.515
DAGMM 0.530 0.608 0.535 0.521 0.777 0.535 0.376 0.771 0.440

VAE 0.592 0.483 0.543 0.504 0.810 0.566 0.418 0.779 0.465
LSTM 0.598 0.706 0.530 0.621 0.730 0.638 0.534 0.726 0.553

ADSketch 0.744 0.670 0.677 0.691 0.732 0.658 0.583 0.745 0.618
Maat 0.753 0.687 0.692 0.595 0.818 0.656 0.568 0.856 0.641

SRCNN 0.741 0.656 0.674 0.619 0.707 0.640 0.597 0.756 0.636

Hyperband 0.836 0.647 0.732 0.640 0.743 0.673 0.615 0.764 0.683
AutoAD 0.798 0.665 0.710 0.611 0.784 0.662 0.539 0.848 0.614

AutoKAD 0.861 0.694 0.769 0.675 0.798 0.685 0.662 0.846 0.692
ADAMAS 0.975 0.763 0.848 0.997 0.832 0.897 0.998 0.878 0.929

Effect size 4.472 2.237 3.091 12.034 0.883 8.316 13.170 1.395 9.292

(a) Correlation of NFMK (b) Correlation of MSE

Fig. 6. The correlation between two evaluation functions and F1 score

metric patterns in a cluster with the same label. The symptoms
in the two industrial datasets are similar for the same types of
performance anomalies. In contrast, the AIOps18 dataset may
contain different types of performance issues that demonstrate
the same patterns, resulting in imperfect precision. However,
we believe that ADAMAS will not introduce much burden
on the cloud operators as only 2.5% of the prediction results
are false positives. Furthermore, we find that the recall on
two industrial datasets is consistently higher compared with
the AIOps18 dataset. We attribute this phenomenon to the
good monitoring mechanism established in Company X that
makes most of the performance anomalies perceptible through
analysis of monitoring metrics. We also calculated Cohen’s
d to measure the effect size of the differences between our
approach and baselines.

In terms of baselines, we observe that AutoML-based base-
lines typically achieve better results compared with others,
consistent with recent studies [23], [24]. This indicates that
in cloud systems, there is no golden algorithm that performs
consistently best on all data from various services, and we
should employ AutoML to achieve better performance rather
than rely on a single algorithm. Among the machine learning-
based and deep learning-based baselines, ADSketch and Maat
perform best across three datasets with average F1 scores of
0.647 and 0.663. Specifically, ADSketch detects performance
anomalies through pattern sketching, and Maat is based on the
denoising diffusion model that resists noisy data during the
training phase, both achieving relatively good performance.
However, all these baselines purely mine the abnormal be-
haviors from the monitoring metrics without incorporating the
crucial domain knowledge from on-site engineers, resulting in

suboptimal results.
C. RQ2: The Effectiveness of Each Components of ADAMAS

In this research question, we conduct an ablation study on
ADAMAS to show the effectiveness of its components. In par-
ticular, we derive seven baseline models based on removing the
feedback from MSC, replacing the NFMK function with other
widely used proxy functions from the AutoML community,
and replacing it with random feedback. We further visualize
the correlation between NFMK and F1 score to demonstrate
the contribution of our design.
• ADAMAS-OFF This baseline removes the human feed-

back provided by on-site engineers and the retraining of
ADAMAS. We merely utilize the model output by AutoML
in the configuration search phase to detect the anomalies.

• ADAMAS-Jacob, Snip, Synflow These three variants re-
place the NFMK function with three widely used proxy
functions, namely, Jacob Covariant [64], Snip [65] and
Synflow [66]. Specifically, the original loss function value
required by Snip is MSE loss in our context.

• ADAMAS-F05, F15, F30 These three baselines randomly
sample 5%, 15%, and 30% of the whole testing metric.
Feedback on these sampled metric segments is utilized.
Table IV shows the experimental results of ADAMAS and

its variants. On one hand, we can observe performance drops
when replacing our NFMK function with other proxy func-
tions. Among these three proxies, Jacob Covariant performs
the best. The assumption behind Jacob Covariant is that a
lower correlation indicates a better network, which works
well when the input data show various anomaly patterns.
However, it may fall short when the input batch contains
similar anomaly features. Another proxy, Snip, requires the
original loss function, which in our case is MSE loss. This
proxy metric approximates the loss change when a certain
parameter is removed and encourages searching for the model
with the lowest loss. In our scenario, where training data may
contain noise, models with low MSE can still be ineffective in
differentiating anomaly patterns. As a result, we can observe a
significant drop on the recall. Similarly, the Synflow function
computes the loss as the product of all parameters without
requiring the original loss. However, it does not inherently



TABLE IV
EXPERIMENTAL RESULTS OF THE ABLATION STUDY

Methods AIOps18 Dataset A Dataset B
Precision Recall F1 Precision Recall F1 Precision Recall F1

ADAMAS-OFF 0.843 0.741 0.778 0.728 0.793 0.730 0.715 0.845 0.751
ADAMAS-Jacob 0.956 0.715 0.813 0.972 0.753 0.857 0.976 0.813 0.870
ADAMAS-Snip 0.941 0.696 0.807 0.963 0.722 0.835 0.967 0.769 0.851

ADAMAS-Synflow 0.923 0.704 0.785 0.952 0.736 0.829 0.956 0.794 0.862
ADAMAS-F05 0.876 0.757 0.791 0.897 0.824 0.841 0.881 0.859 0.858
ADAMAS-F15 0.904 0.760 0.815 0.921 0.828 0.858 0.921 0.854 0.877
ADAMAS-F30 0.935 0.752 0.823 0.946 0.827 0.865 0.954 0.857 0.883

ADAMAS 0.975 0.763 0.848 0.997 0.832 0.897 0.998 0.878 0.929

(a) Parameter Sensitivity of γ (b) Parameter Sensitivity of δ

Fig. 7. Parameter Sensitivity of ADAMAS

consider the specific pattern of input data. Generally speaking,
these proxies are not specially designed for anomaly detection,
and they neglect the unique characteristics of the task, thus
leading to unsatisfactory performance.

On the other hand, human feedback through MSC helps
to improve the effectiveness of ADAMAS as it performs the
best compared with the variants without feedback or with
random feedback. We observe that in the variant without
human feedback, not only does the precision drop markedly,
but also the recall decreases a bit. We attribute this to the
design of retraining during the adaptive learning phase because
the human-labeled evolving anomaly patterns are utilized to
update our searched model, enhancing its ability to capture
unseen anomalies. Compared with the results in Table III,
we find that even without human feedback, our method still
outperforms all the baselines, which shows the effectiveness
of the design of our configuration search phase. It should
be noted that, according to our experiments, the feedback
ratio required by ADAMAS for three datasets is 5.9%, 6.7%,
and 4.3%, respectively. Compared to baselines with random
feedback, ADAMAS can achieve higher performance with
less human feedback than utilizing even 30% feedback of
the whole metric, which demonstrates the effectiveness of our
design of the MSC algorithm, where anomaly patterns in the
same cluster will only be labeled by engineers once.

Our proposed NFMK function tries to fit the noise-free
metric patterns and prevent overfitting through a regularization
term. To demonstrate this, we visualize the correlation of the
NFMK function versus the F1 score compared with MSE,
shown in Fig. 6. For the MSE function, we can observe a
trend of decline in the correlation when the MSE is small
enough. This indicates the model overfits the metrics, i.e., it
fits both the normal and anomalous pattern well, resulting in a
drop in performance. In fact, an effective performance anomaly
detection method generally reconstructs normal patterns well

while differentiating anomalies with high reconstruction er-
rors, while our NFMK function takes this into account. Ac-
cording to our assumption, the smaller the NFMK function
is, the better the performance is. We can observe an obvious
negative correlation between the NFMK function and the F1
score, which demonstrates the effectiveness of the NFMK
function as an estimator of the F1 score.

D. RQ3: Parameter Sensitivity of ADAMAS

In ADAMAS, there are only two parameters to tune, namely,
the threshold γ that determines the ratio of noise in the NFMK
function and δ that represents the radius of a new cluster in
MSC. We hereon evaluate the sensitivity of ADAMAS to these
two parameters on two industrial datasets. We change the value
of γ and δ while keeping all other parameters unchanged in
our experiments to guarantee fairness. Specifically, we choose
the value of γ in the range from 0.95 to 0.99, while the value
of δ is selected, ranging from 0.01 to 0.05. Fig. 7 presents
the experimental results, where we observe that ADAMAS is
relatively stable under different settings. Therefore, ADAMAS
exhibits robustness to these two parameters, eliminating the
need for meticulous parameter tuning. This aligns well with
our objective of sparing non-ML expert engineers’ effort in
parameter tuning. It should be noted that there is a consistent
decline in performance with the increase of the δ. This can
be attributed to the fact that when the radius of a new
pattern becomes excessively large, it results in numerous new
anomalous patterns merging into a single cluster. However,
these patterns may not represent the same type of performance
anomaly, thus reducing the accuracy.

E. Case Study

Since October 2023, ADAMAS has been effectively in-
corporated into the cloud service systems of Company X , a
leading company that provides cloud service to millions of
users worldwide. ADAMAS can be seamlessly integrated into
the existing cloud monitoring data analytics pipeline, such as
Apache Kafka [7], InfluxDB [67], Datadog [68]. We focus on
the deployment of ADAMAS in the Object Storage Service
(OBS), which is a scalable solution offering cloud storage
through a RESTful web services interface. Fig. 8 reflects the
feedback required by ADAMAS over a 25-week deployment
period, according to the weekly troubleshooting reports pro-
duced by SREs. It can be observed that the required feedback
experiences a significant decrease after the initial week, thanks



Fig. 8. Industrial deployment in OBS service

to our design of MSC. Following a service update in the six-
teenth week, new anomaly patterns begin to emerge, resulting
in an increase in required feedback. However, within a week,
the required feedback decreases to a relatively low level again,
effectively reducing the workload for SREs. Furthermore, we
notice two drops in the accumulated false positives. This
occurs due to our design of retraining when the accumulated
false positives exceed a predetermined threshold (0.6 in our
normalized values), which makes ADAMAS adaptive to the
evolving anomaly patterns of the cloud system.

Fig. 9 presents a case study illustrating how ADAMAS
harnesses human feedback to minimize false positives. This
example focuses on a metric monitoring the data transfer rate
within the OBS provided by Company X . A transient spike
in the metric may be attributed to expected events like an
influx in user requests or planned data migration. These events
are not typically categorized as performance anomalies. On
the contrary, a sudden dip to near zero in the data transfer
rate could suggest network congestion or service malfunction,
necessitating prompt troubleshooting. In this case, the green
areas highlight four false positives; nonetheless, only the first
anomaly pattern will undergo manual inspection by engineers,
as these four false positives share a similar pattern and would
be clustered together. When encountering a true performance
anomaly, as denoted by the red area, an alert will be triggered.
Engineers can then confirm that the service is experiencing
performance degradation. When this anomaly pattern recurs
again, engineers can recognize performance anomalies even
without the effort of manually checking. Thus, we posit
that our design of ADAMAS can reduce false positives and
facilitate maintaining cloud systems.

V. DISCUSSION

In this section, we discuss the reduction of human efforts
with ADAMAS, its overhead, and some potential threats to
the validity.

A. The Reduction of Human Efforts

We give an estimation of how much time ADAMAS can
reduce the amount of human effort. The feedback ratio re-
quired by ADAMAS for the three datasets is 5.9%, 6.7%,
and 4.3%. Based on interviews with software engineers who
routinely maintain the systems, about 30% of data should be
reviewed manually to maintain accurate anomaly detection
without ADAMAS. We estimate that without ADAMAS, SREs
should manually check approximately six times the cases.
According to the interview with SREs, each SRE typically

Fig. 9. Case Study in OBS service

checks around 100 anomalies per week and spends about 2-3
minutes per anomaly, amounting to approximately 4 hours per
week in total. ADAMAS can potentially reduce this effort to
around 40 minutes. Thus, ADAMAS can reduce more than 3
hours of manual effort for each SRE per week. We aim to
gather more data to accurately assess the exact time savings,
which will be the focus of our future work.

B. The overhead of ADAMAS

The execution time for ADAMAS mainly consists of three
components: the computation time for searching optimal con-
figuration (the most time-consuming one), the time spent
by humans providing feedback, and the time required for
clustering. According to our investigation, when we search
for 20 iterations and train each model with 50 epochs, the
average execution times on three datasets for ADAMAS and
Hyperband are 937s and 354s, respectively. It should be
noted that the efficiency can be enhanced when utilizing
the computational power available in cloud service systems.
Furthermore, since this phase is conducted offline, its impact
on real-time operations is insignificant. Thus, the overhead is
affordable for industrial deployment.

C. Threats to Validity

Internal threats. The implementation of baselines consti-
tutes one of the internal threats to our study’s validity. To
address the threat of implementation, we directly utilized the
open-sourced code released by the authors of the papers. As
for our proposed approach, the source code undergoes rigorous
peer code review by the authors and experienced engineers
to minimize the risk of errors in our results. To mitigate the
parameter setting threat, we fine-tuned the baseline methods
utilizing a grid-search approach and derived the optimal re-
sults. To make our results reproducible, we have also made
our code and partial data available.

External threats. The external threats to the validity of our
study mainly lie in the generalizability of our experimental
results. We conduct experiments on large-scale cloud systems
within a prominent cloud service company. In addition to
this, our approach is also evaluated on a publicly available
dataset containing monitoring metrics from the web services
of a large-scale IT company, further expanding the scope of
our evaluation. Therefore, we believe the evaluation is repre-
sentative and convincing, demonstrating that our framework
ADAMAS could be applied to typical cloud systems.



VI. RELATED WORK

Performance Anomaly Detection. Metrics anomaly detec-
tion approaches can be divided into machine learning-based
and deep learning-based. A representative method of machine
learning is ADSketch [7], an online performance anomaly
detection approach based on pattern sketching that compares
anomaly patterns with the historically identified patterns and
updates the cluster synopsis with the evolving data. Another
widely-used method is Isolation Forest (IForest) [59], which
assumes that anomalous data can be more easily isolated
through multiple binary trees. Among deep learning-based
approaches, DAGMM [60] is a deep auto-encoding Gaussian
mixture model without considering the temporal pattern in
monitoring metrics. Another method is VAE [11], which
detects anomalies by the reconstruction error from the normal
hidden state of monitoring metrics. LSTM [61], [12] leverages
the Long Short-Term Memory (LSTM) network for anomaly
detection in monitoring metrics based on prediction errors.
SRCNN [20] is a metric anomaly detection service deployed
at Microsoft, widely used by teams including Bing, Office,
and Azure. It is based on the combination of Spectral Residual
(SR) and Convolutional Neural Network (CNN). Maat [13] is
a conditional denoising diffusion-based model, which defines
anomaly-indicating features and then distinguishes perfor-
mance anomalies from normal metric segments.

AutoML-Based Anomaly Detection. In large-scale cloud
systems, manual model selection and hyperparameters are
time-consuming and error-prone; thus, engineers resort to
utilizing the AutoML technique. One of the most popular
solutions is HyperBand [39], which combines the randomized
search procedure Successive Halving with the early-stopping
mechanism. However, the random nature and the neglect of
historical information from previously explored Hyperband
configurations result in suboptimal results. ProxyBO [69] is
another efficient AutoML-based framework that utilizes three
proxy functions to accelerate neural architecture search. How-
ever, these proxies are not particularly designed for anomaly
detection. Besides, several AutoML-based solutions specially
designed for anomaly detection are proposed. Among them,
AutoAD [23] is the first AutoML framework that utilizes
an unsupervised measurement for model evaluation. However,
AutoAD adopts MSE as the evaluation function, which cannot
accurately approximate the performance. AutoKAD [24] is
another AutoML framework that applies Bayesian Optimiza-
tion [56], which iteratively searches for the optimal config-
urations with MSE-NF function. Both methods capture the
relationship between the performance and the hyperparameter
settings and search for the best performance configuration.
However, they neglect the difference between true anomaly
and predicted anomaly without considering the domain knowl-
edge of cloud system experts. Thus, the overwhelming false
positives will add burdens on cloud operators. Besides, exist-
ing AutoML-based anomaly detection frameworks are offline,
which makes it difficult to apply them to online scenarios in
which software changes and anomaly patterns evolve.

Online Stream Clustering. As the scale of cloud systems
grows increasingly large, monitoring platforms are gathering
an overwhelming amount of data on the fly. Thus, the his-
torical metrics data required by offline clustering methods
are unavailable as past data are discarded due to the limited
storage. As such, online stream clustering has gained more
popularity in large-scale cloud service systems, where only
some synopsis of the historical metrics are retained [70].
Among these stream clustering methods, CluStream [71] is
a partitioning-based method based on the concept of mi-
croclusters, which summarizes a set of instances from the
metric stream. However, the number of clusters should be
predefined, limiting its robustness [72]. Another representative
method is E-Stream [73], a hierarchical method that uses a
data structure named the α-bin histogram for saving summary
statistics. However, this category of methods typically bears
high complexity and is sensitive to outliers. MuDi-Stream [74]
is a density-based method that falls into the same category
as our stream clustering method, based on the combination
of density-based clustering and grid-based outlier detection.
However, it requires much more tuning of parameters. In
a word, both CluStream and MuDi-Stream contradict our
objective of minimizing the need for manual parameter tuning.
The E-Stream method falls short of meeting the requirements
of real-time analysis essential in online scenarios. Thus, these
methods were not adopted in our scenario.

VII. CONCLUSION

In this work, we propose ADAMAS, an adaptive AutoML-
based performance anomaly detection framework incorporated
with domain knowledge. Specifically, ADAMAS consists of
a configuration search stage and a feedback-based Adaptive
Learning stage. In the first stage, a novel unsupervised evalu-
ation function, NFMK, is proposed to guide the configuration
search. In the second stage, we incorporate human feedback
to differentiate true anomalies from all predicted anomalies.
A streaming metrics clustering algorithm, MSC, is proposed
to leverage the historical feedback from on-site engineers to
decrease the human effort. Furthermore, when the number of
mispredicted anomalies exceeds a threshold, retraining will be
triggered to make our framework adaptive to evolving patterns
due to rapid software updating. Extensive experiments on a
public dataset and two industrial datasets show that ADAMAS
achieves 0.891 F1-Score on anomaly detection, outperforming
all the baselines. Furthermore, a case study demonstrates
how ADAMAS is deployed into the cloud service system of
Company X .
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