
Adaptive Performance Anomaly Detection for Online Service
Systems via Pattern Sketching

Zhuangbin Chen
The Chinese University of Hong Kong

Hong Kong, China

Jinyang Liu
The Chinese University of Hong Kong

Hong Kong, China

Yuxin Su∗
School of Software Engineering

Sun Yat-sen University
Zhuhai, China

Hongyu Zhang
The University of Newcastle

NSW, Australia

Xiao Ling
Yongqiang Yang
Huawei Cloud BU
Beijing, China

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong, China

ABSTRACT
To ensure the performance of online service systems, their status
is closely monitored with various software and system metrics.
Performance anomalies represent the performance degradation is-
sues (e.g., slow response) of the service systems. When performing
anomaly detection over the metrics, existing methods often lack the
merit of interpretability, which is vital for engineers and analysts to
take remediation actions. Moreover, they are unable to effectively
accommodate the ever-changing services in an online fashion. To
address these limitations, in this paper, we propose ADSketch, an in-
terpretable and adaptive performance anomaly detection approach
based on pattern sketching. ADSketch achieves interpretability by
identifying groups of anomalous metric patterns, which represent
particular types of performance issues. The underlying issues can
then be immediately recognized if similar patterns emerge again.
In addition, an adaptive learning algorithm is designed to embrace
unprecedented patterns induced by service updates or user behav-
ior changes. The proposed approach is evaluated with public data
as well as industrial data collected from a representative online
service system in Huawei Cloud. The experimental results show
that ADSketch outperforms state-of-the-art approaches by a sig-
nificant margin, and demonstrate the effectiveness of the online
algorithm in new pattern discovery. Furthermore, our approach has
been successfully deployed in industrial practice.

CCS CONCEPTS
• Computer systems organization→ Cloud computing; Reli-
ability;Maintainability and maintenance.

KEYWORDS
Cloud computing, performance anomaly detection, online learning
∗Corresponding author (suyx35@mail.sysu.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510085

ACM Reference Format:
Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang
Yang, and Michael R. Lyu. 2022. Adaptive Performance Anomaly Detection
for Online Service Systems via Pattern Sketching. In 44th International Con-
ference on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.
3510085

1 INTRODUCTION
With the emergence of cloud computing, many traditional soft-
ware systems have been migrated to cloud computing platforms as
online services. Similar to conventional shrink-wrapped software,
the performance of online service systems is an important quality
attribute. As online services need to serve millions of customers
worldwide, a short period of performance degradation could lead
to economic loss and user dissatisfaction. Therefore, proactive and
even adaptive system troubleshooting has become the core compe-
tence of online service providers. Enterprises that have promoted
the automation of system troubleshooting have already received
real gains in reliability, efficiency, and agility [6, 7, 21].

In industrial scenarios, online service systems are closely moni-
tored with various metrics (e.g., the CPU usage of an application,
service response delay) on a 24×7 basis. This is because the monitor-
ing metrics often serve as the most direct and fine-grained signals
that flag the occurrence of service performance issues. In addition,
they provide informative clues for engineers to pinpoint the root
causes. However, due to the large scale and complexity of online
service systems, the number of metrics is overwhelming the ex-
isting troubleshooting systems [6]. Automated anomaly detection
over the metrics, which aims to discover the unexpected or rare
behaviors of the metric time series, is therefore an important means
to ensure the reliability and availability of service systems.

Although many efforts, e.g., [13, 32, 37], have been devoted to
performance anomaly detection, most of the existing work does not
possess the merit of interpretability. Specifically, at each timestamp,
they calculate a probability indicating the likelihood of performance
anomalies. A threshold is then chosen to convert the probability
into a binary label – normal vs. anomaly. However, in reality, a
simple recommendation of the suspicious anomalies might not be of
much interest to engineers. This is because they need to manually
investigate the problematic metrics (recommended by the model)
for fault localization. For large-scale online services, this process

https://doi.org/10.1145/3510003.3510085
https://doi.org/10.1145/3510003.3510085
https://doi.org/10.1145/3510003.3510085

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

is like finding a needle in a haystack. The problem is compounded
by the fact that false alerts are not rare. Moreover, many state-
of-the-art methods train models with historical metric data in an
offline setting. As online services continuously undergo feature
upgrades and system renewal, the patterns of metrics may evolve
accordingly, i.e., concept drift [11, 12]. Without adaptability, these
models are unable to accommodate the ever-changing services and
user behaviors.

In this paper, we propose ADSketch, a performance anomaly
detection approach for online service systems based on pattern
sketching, which is interpretable and adaptive. The main idea is to
identify discriminative subsequences from metric time series that
can represent classes of service performance issues. This is similar
to the problem of shapelet discovery in time series data [28, 36].
Particularly, for multiple subsequences that describe the same type
of performance issue, we take the average of them and regard the
result as a metric pattern for the issue. For example, services may
be experiencing performance degradation when we observe a level
shift down on Service Throughput or a level shift up on CPU Uti-
lization. The advantages of such metric patterns are twofold. First,
the normality of the incoming metric subsequences can be quickly
determined through a comparison with the metric patterns. Second,
by associating the patterns with typical anomaly symptoms, we
can immediately understand the ongoing performance issues when
the metric subsequences exhibit known patterns. This is similar to
failure/issue profiling [18, 22, 27]. In this way, ADSketch provides
a novel mechanism to characterize service performance issues with
metric time series. Previous work on failure/issue profiling often
requires handcrafted features, which suffers from limited general-
ization. For example, Brandon et al. [4] manually defined a set of
features collected from metrics, logs, and anomalies to characterize
failures. Pattern sketching with metrics enjoys the advantages of
automation and accuracy. Moreover, ADSketch is able to adaptively
embrace new anomalous patterns when detecting anomalies on the
fly. Experimental results demonstrate the superiority of our design
over the existing state-of-the-art time series anomaly detectors on
both public and industrial data. In particular, we have achieved an
average F1 score of over 0.8 in production systems.

To sum up, this work makes the following major contributions:
• We propose ADSketch, an interpretable and adaptive ap-
proach for service performance anomaly detection. ADS-
ketch offers a way to characterize service performance issues
with monitoring metrics. Different from the existing work,
ADSketch is able to provide explanations (e.g., the type of
the underlying performance issues) for its prediction results
and accept new patterns on the fly. The implementation of
ADSketch and datasets are publicly available on GitHub1.
• We conduct experiments with public data as well as indus-
trial service metric data collected from Huawei Cloud. The
experimental results demonstrate the effectiveness of ADS-
ketch in terms of both anomaly detection and adaptive met-
ric pattern learning. Furthermore, our framework has been
successfully incorporated into the service performance mon-
itoring system of Huawei Cloud. Our industrial practice
confirms its practical usefulness.

1https://github.com/OpsPAI/ADSketch

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

Interface Throughput

0 2000 4000 6000 8000 10000
0.0

0.5

1.0
Request Timeout Number

0 2000 4000 6000 8000 10000
Time

0.0

0.5

1.0
Application CPU Usage

Figure 1: Examples of performance anomaly patterns

2 BACKGROUND & PROBLEM STATEMENT
2.1 Performance Anomaly Patterns in Online

Service Systems
In online service systems, a large number of metrics are configured
to monitor various aspects of both logical resources (e.g., a virtual
machine) and physical resources (e.g., a computing server). Cloud
systems often possess an abundance of redundant components,
providing the ability of fault tolerance and self-healing (e.g., load
balancing, availability zones). Consequently, the majority of service
breakdowns tend to manifest themselves as performance anomalies
first instead of fail-stop failures [14, 20]. We observe when perfor-
mance anomalies of similar types happen, their impacts tend to
trigger similar reactions/symptoms on the metric time series, which
we refer to as metric patterns. For example, a level shift up on Inter-
face Throughput may indicate slow service response, which could
be caused by a load balancing failure; a level shift down on it may
suggest service unavailability, and the culprit could be performance
bugs (e.g., memory leak bugs). Similar observations have been made
in [8, 22]. The rationale behind such a phenomenon is twofold. First,
the design of the metrics is sophisticated and fine-grained, each of
which is dedicated to monitoring a specific problem, e.g., request
timeout, high API error rate. Second, cloud systems widely employ
the microservices architecture, where cloud applications employ
lightweight container deployment, e.g., cloud-native applications,
serverless computing. With this architecture, each microservice is
designated for well-defined and modularized jobs, e.g., user login,
location service. Thus, they tend to develop individual and stable
patterns, which can manifest through their monitoring metrics.

2.2 Metric Pattern Mining
Metric patterns (i.e., time-series subsequences describing the misbe-
having moments of metrics) can be leveraged to sketch the perfor-
mance issues for anomaly detection. This is essentially profiling the
mode of recurrent anomalies. For example, hardware failures often
come with a sudden drop in the corresponding metrics, and the
value remains zero for some time. If anomalies come into existence,
they can be immediately identified by matching the established
patterns. Such metric patterns can also facilitate problem mitiga-
tion. For example, when low service throughput and high CPU
usage are detected, engineers can scale up the microservice (by
adding local cores) to increase its capacity. The key challenge is
how to automatically discover what anomalous patterns a metric

https://github.com/OpsPAI/ADSketch

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Adaptive Pattern
Learning

Anomaly-free metric

Metric for anomaly
detection

Metric Pattern
Discovery

New metrics
in online scenarios

Normal
Patterns

Abnormal
Patterns

O
ffl

in
e

Ph
as

e
O

nl
in

e
Ph

as
e

Offline Prediction

Online
Prediction

Figure 2: The Overall Framework of ADSketch

time series has experienced. For each identified pattern, engineers
can label the typical performance issues it often associates with.
In online scenarios, if a metric encounters any known anomalous
patterns, the underlying performance issues can be recommended.
Pattern sketching therefore provides a means to accumulate and
utilize engineers’ knowledge.

In real-world scenarios, the patterns exhibited in metrics are
extremely complicated and can have numerous variants in terms
of scale, length, and combination. Particularly, we have identified
the following challenges for metric pattern discovery, which are
illustrated in Fig. 1. Each metric time series records around one
week of monitoring data, whose anomalies are shown in red.

Background noise. Although a large amount of metric time
series is generated, a significant portion of them is trivial, which
only records plain system runtime behaviors. Moreover, due to
the dynamics of online services, some metrics may experience
concept drift [11]. For example, the Application CPU Usage in Fig. 1
drops abruptly, which could be caused by a role switch (e.g., from a
primary node to a backup node) or user behavior change. How to
distinguish anomalous patterns from normal ones is non-trivial.

Pattern variety. A metric curve can possess multiple distinct
patterns simultaneously. For example, in Fig. 1, the Interface Through-
put has two anomaly patterns, i.e., spike up and spike down. Also,
the patterns can have different scales, as indicated by the two spikes
in the Request Timeout Number. We need to consider the context
of each metric for pattern extraction.

Varying anomaly duration. Different performance issues may
vary in duration. The first two anomalies in the Interface Through-
put constitute such an example. Particularly, how long an anomaly
lasts is also an important factor that engineers rely on to understand
a service’s health state. When characterizing the issues, such a fact
should be properly considered.

2.3 Problem Statement
The goal of this work is to detect performance anomalies for mod-
ern software systems, especially online service systems, based on
monitoring metrics. To facilitate issue understanding and prob-
lem mitigation, we intend to improve the interpretability of the
detection results. To this end, we propose to sketch performance
issues with metrics based on our observation that similar issues
often exhibit alike patterns. By extracting such anomalous metric

Table 1: Summary of Variables

Variable Meaning

T𝑛 An anomaly-free metric time series
T𝑎 An input metric time series for anomaly detection
𝑡 A subsequence of metric time series
𝑚 The length of the metric subsequence 𝑡
𝑝 The percentile threshold to find deviated subseqs
P𝑛 The index set of normal metric patterns
P𝑎 The index set of anomalous metric patterns
𝜇𝐶 The vector of cluster mean vectors
S𝐶 The vector of cluster sizes
R𝐶 The vector of cluster radii

patterns, we can conduct performance anomaly detection by exam-
ining whether the incoming metric subsequences match the known
patterns. Moreover, by associating the extracted metric patterns to
specific performance issues, we can obtain a quick understanding
of the ongoing issues in online scenarios. Additionally, as online
services are continuously evolving, unprecedented metric patterns
may emerge. Thus, our algorithm should be adaptive to the new
patterns. The problem can be formally defined as follows.

The input of a metric time series can be represented as T ∈
R𝑙 = [𝑡1, 𝑡2, ..., 𝑡𝑙], where 𝑙 is the number of observations. 𝑡𝑚

𝑖
=

[𝑡𝑖 , ..., 𝑡𝑖+𝑚−1] is a consecutive subsequence of T starting from 𝑡𝑖
with length𝑚, where 𝑖 ∈ [0, 𝑙 −𝑚]. The objective of performance
anomaly detection is to determine whether or not a given 𝑡𝑚

𝑖
is

anomalous, i.e., whether there are performance issues happening
from timestamp 𝑖 to 𝑖 +𝑚 − 1. Particularly, we also try to explain
the type of performance issues associated with 𝑡𝑚

𝑖
. The anomalous

subsequences will be used to construct abnormal metric patterns,
while the benign ones will be regarded as normal patterns. Both
the normal and abnormal metric patterns will be updated as the
anomaly detection proceeds.

3 METHODOLOGY
3.1 Overview
In online service systems, performance anomalies often serve as
the (early) signals for critical failures, which should be detected
effectively. However, accuracy alone is far from satisfactory, as
it will be labor-intensive to manually investigate the problematic
metrics for issue understanding. ADSketch facilitates this process
by providing prompt anomaly alerts with explanations.

The overall framework of ADSketch is shown in Fig. 2, which
consists of two phases, namely, offline anomaly detection and online
anomaly detection. In the offline phase, ADSketch takes as input a
pair of metric time series. One metric time series is anomaly-free,
which serves as the basis to detect anomalies in the other metric (if
any). In this process, a set of metric patterns will be automatically
learned. A metric pattern is essentially the mean of a set of similar
metric subsequences representing similar service behaviors. The
identified metric patterns are divided into two types, i.e., normal
and abnormal. The abnormal patterns often characterize some par-
ticular types of performance issues, as discussed in Sec. 2.1. Thus,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

Anomaly-free metric time series !!

Metric time series for anomaly detection !"

Break due to percentile
threshold unfulfillment

Apply self-union and cross-union STAMP
to get the most similar subsequences

Apply Affinity
Propagation to
the mean of each
subgraph

The mean of each cluster

Metric patterns, and
is the only abnormal pattern

Apply Affinity Propagation to get globally similar
subsequences and calculate the metric patterns

Construct a graph G based on subsequences’
similarity and find the connected subgraphs

Isolated subgraphs,
also the anomaly
candidates

Metric subsequences The most similar subsequenceA group of similar subsequences Subsequence graph link

"#

#$
#%

Figure 3: The Algorithm of Performance Anomaly Pattern Discovery

0 2000 4000 6000 8000 10000
Time

0.0

0.5

1.0

Interface Throughput

0 2000 4000 6000 8000 10000
Metric subsequence index

0.0

0.5

1.0 SPW Distance

Figure 4: The SPWdistance of differentmetric subsequences

by investing manual efforts to link them to the corresponding is-
sues, a clearer picture of the underlying problems can be easily
obtained if similar patterns are encountered again. In the online
phase, we leverage the metric patterns built in the offline phase
to conduct anomaly detection in online scenarios, where metrics
arrive in streams. Particularly, in production environments, un-
precedented patterns could appear. Thus, we design an adaptive
learning algorithm to capture the new patterns continuously.

Before formally introducing our algorithms, we have summa-
rized the variables involved in Table 1.

3.2 Offline Anomaly Detection
3.2.1 Metric Pattern Discovery. The idea for discovering the abnor-
mal patterns follows the basic definition of an anomaly: if a metric
subsequence deviates significantly from those collected during a
service’s normal executions, it is likely that the subsequence cap-
tures some misbehaving moments of the service. To measure how
deviated a metric subsequence is, we calculate its distance to other
subsequences and search for the smallest distance score. Intuitively,
metric subsequences which have large scores to others tend to be
anomalous. The function for distance measure is customizable, and
we adopt Euclidean distance in this paper.

Given a metric time series with 𝑙 observations, the number of all
possible subsequences is 𝑙 −𝑚 + 1, where𝑚 is the length of its sub-
sequences. A naïve solution for calculating the smallest pair-wise
distance (which we refer to as SPW distance hereafter) would be
brute force searching. However, this algorithm owns a quadratic

time complexity, which is practically infeasible for large time se-
ries. Fortunately, some novel scalable algorithms [35, 36, 38] have
been proposed in the literature to attack such all-pairs-similarity-
search problems for time series subsequences. Particularly, Yeh et
al. [36] proposed STAMP, which has achieved orders of magnitude
faster compared to state-of-the-art methods. For exceptionally large
datasets, an ultra-fast approximate solution is also provided. An
illustrating example is provided in Fig. 4, where we can see the
misbehaving metric subsequences have larger SPW distances. In
particular, the original STAMP algorithm adopts z-normalization
for data preprocessing. However, we found min-max normalization
yields more meaningful results in our scenario. For a subsequence
𝑡𝑚
𝑖

in a metric time series T , we record the index and distance score
of another subsequence having the SPW distance to it. Such index
and score of all subsequences, i.e., 𝑡𝑚

𝑖
(𝑖 ∈ [0, 𝑙 −𝑚]), constitute two

vectors I and S. In particular, for 𝑡𝑚
𝑖
, its closest subsequence can

either come from the same time series (i.e., self-union) or another
time series (i.e., cross-union). In the first case, a trivial match region
around 𝑡𝑚

𝑖
will be excluded to avoid self matches [36].

The proposed algorithm for metric pattern discovery is presented
in Algorithm 1, which is illustrated in Fig. 3. Algorithm 1 takes as
input two metric time series, i.e., T𝑛 and T𝑎 (T𝑛 is anomaly-free
and T𝑎 may contain anomalies to be detected), and two hyper-
parameters, i.e.,𝑚 and 𝑝 (𝑚 is the length of subsequences and 𝑝

is the percentile threshold to find the deviated subsequences). As
production service systems are mostly running in normal status [6],
the anomaly-free input is easily obtainable (we discuss how we
address the violating cases in Sec. 5.3). In line 1 of Algorithm 1,
we apply STAMP to T𝑛 with self-union (i.e., similar subsequences
come from T𝑛), and obtain the index and score vectors I𝑛𝑛 and
S𝑛𝑛 . In line 2, we search similar subsequences for T𝑎 from T𝑛 ,
i.e., cross-union, and get I𝑛𝑎 and S𝑛𝑎 . Intuitively, given the fact
that T𝑛 is anomaly-free, subsequences in T𝑎 having large SPW
distances to their closest peers in T𝑛 are suspected to be anomalous.
Interestingly, we later learn thatMercer et al. [23] proposed a similar
idea concurrently. We introduce a percentile threshold (i.e., 𝑝) on
S𝑛𝑎 to find such deviated subsequences. In particular, 𝑝 is loosely
set to avoid missing anomalies, i.e., false negatives. Such a setting
will inevitably produce false positives. We next discuss how we
alleviate this issue.

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Algorithm 1: Performance Anomaly Pattern Discovery
Input: T𝑛 , T𝑎 ,𝑚, and 𝑝
Output: Two disjoint sets of P𝑛 and P𝑎

1 I𝑛𝑛,S𝑛𝑛 ← STAMP(T𝑛,T𝑛,𝑚)
2 I𝑛𝑎,S𝑛𝑎 ← STAMP(T𝑛,T𝑎,𝑚)
3 𝐺 ← ConnectedSubgraphs(I𝑛𝑛 + I𝑛𝑎,S𝑛𝑎, 𝑝)
4 𝑁𝑖 ← IsolatedNodes(𝐺)
5 𝜇𝐺 ← GraphWiseMean(𝐺)
6 𝐶 ← AffinityPropagation(𝜇G)
7 𝜇𝐶 ← ClusterWiseMean(𝐶)
8 P𝑛 ← EmptyArray,P𝑎 ← EmptyArray
9 for 𝑒𝑎𝑐ℎ 𝑖𝑑𝑥 𝑖𝑛 1 : Size(𝐶) do

// 𝐶 [𝑖𝑑𝑥]: all subsequences in the cluster

10 if 𝐶 [𝑖𝑑𝑥] ⊂ 𝑁𝑖 then
11 P𝑎 ← Append P𝑎 with 𝑖𝑑𝑥
12 else
13 P𝑛 ← Append P𝑛 with 𝑖𝑑𝑥
14 end
15 end

Algorithm 2: Performance Anomaly Detection
Input: 𝑡 , P𝑎 , and 𝜇𝐶
Output: Anomaly detection result for 𝑡

1 D𝑡 ← PairWiseDistance(𝑡, 𝜇𝐶)
2 𝑖𝑑𝑥 ← MinIndex(D𝑡)
3 if 𝑖𝑑𝑥 ∈ P𝑎 then
4 return True
5 else
6 return False
7 end

A metric pattern is defined as the mean of a group of similar sub-
sequences, which represents some typical behaviors of the metric
time series. To mine similar subsequences, we propose to leverage
their similarity connections. Specifically, in line 3, we construct a
graph 𝐺 whose nodes correspond to the subsequences. Two nodes
will be linked if any one of them is deemed as the most similar
subsequence to the other, as indicated by I𝑛𝑛 and I𝑛𝑎 . Note such
a relationship is not mutual, i.e., 𝑡𝑚

𝑖
is the most similar to 𝑡𝑚

𝑗
does

not necessarily imply the opposite case. We break the edges whose
distance score fails to meet the threshold requirement 𝑝 . The above
operations are depicted in the first part of Fig. 3. Next, we find
the connected subgraphs of 𝐺 , each of which is composed of sub-
sequences resembling each other. Particularly, there will be some
isolated nodes, i.e., subgraphs with a single node, which are col-
lected at line 4. Such deviated subsequences constitute a set of
anomaly candidates, i.e., 𝑁𝑖 . The second part of Fig. 3 illustrates
this process.

Up to this point, we have divided the subsequences of T𝑛 and
T𝑎 into different parts, each of which is represented as a subgraph.
However, each subgraph cannot be directly regarded as a metric
pattern because: 1) the graph construction criteria can be too strict
(i.e., only the most similar pairs are connected), so some subgraphs

might still be similar; 2) the loosely set percentile threshold 𝑝 may
flag some normal subsequences as abnormal (i.e., false positives).
To further combine the similar subsequences, we apply the Affinity
Propagation algorithm [10] to cluster the mean vector of each sub-
group (line 5-6). We choose this algorithm because of its superior
performance and efficiency, and it requires no pre-defined cluster
number. As a result, similar normal subgraphs can be merged to-
gether, and abnormal subgraphs have a chance to embrace their
normal communities. Thus, each cluster will contain all similar
subsequences across the two time-series inputs and different clus-
ters represent distinct patterns. The mean of clusters (i.e., 𝜇𝐶) will
form the set of metric patterns (line 7). For each cluster, we check
whether or not all its members come from the set of anomaly candi-
dates 𝑁𝑖 (line 9-15). If yes, the mean of the cluster will be regarded
as an abnormal metric pattern and otherwise normal, indexed by
P𝑎 and P𝑛 , respectively. The third part of Fig. 3 presents the above
operations. Finally, all subsequences in the anomalous clusters will
be predicted as an anomaly to be the output of this phase.

3.2.2 Metric Pattern Interpretability. In this section, we expound
on how to label the performance issues that each metric pattern
represents. By allowing metric patterns to have semantics, the un-
derstanding and mitigation of service problems can be greatly accel-
erated. Given the fact that the duration of different performance is-
sues may vary, our fixed-length metric patterns may over-represent
(i.e., the metric pattern is much larger than the issue’s duration) or
under-represent (i.e., the metric pattern is only an excerpt of the
issue) the corresponding issues. To alleviate the first problem, we
select a relatively small𝑚, which turns out to be aligned with the
goal of better performance. For the second problem, we adopt the
following strategy to group clusters which are actually describing
a common issue. For each pair of clusters, we check whether they
have some subsequences that share some parts in common. All
clusters sharing such overlaps together can recover the complete
picture of the issue. Thus, we regard them as describing an identical
issue. Finally, for each metric pattern, domain engineers will label
the type of performance issue that triggers it. Particularly, one pat-
tern can have multiple labels simultaneously. The metric patterns
with overlaps will share the same set of performance issue labels.

3.3 Online Anomaly Detection
3.3.1 Anomaly Detection on the Fly. Based on the metric patterns
identified in Algorithm 1, we now describe our algorithm (Algo-
rithm 2) for anomaly detection in online scenarios. The idea is
straightforward: given a new metric subsequence 𝑡 with length𝑚,
we search for its most similar metric pattern (line 1-2) and check
which pattern pool it comes from. If 𝑡 is more similar to an abnormal
pattern, it will be predicted as anomalous; otherwise, normal (line
3-7). In real-world systems where monitoring metrics are generated
in a stream manner, this process is continuously running for all
coming subsequences. When an anomaly is identified, we would
like to provide more interpretation about it, e.g., what kinds of
performance issues have happened. This is done by simply recom-
mending the issues associated with the most similar metric pattern
for all involved metrics. Particularly, in Algorithm 1, each cluster
(i.e., 𝐶 at line 6) contains all subsequences that are deemed as simi-
lar. The design of our online anomaly detection only requires the

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

Algorithm 3: Adaptive Pattern Learning
Input: 𝑡 , P𝑛 , P𝑎 , 𝜇𝐶 , S𝐶 , and R𝐶
Output: Updated variables: P𝑛 , P𝑎 , 𝜇𝐶 , S𝐶 , and R𝐶

1 D𝑡 ← PairWiseDistance(𝑡, 𝜇𝐶)
2 𝑖𝑑𝑥 ← MinIndex(D𝑡)
3 𝜇

′ ← (𝜇𝐺 [𝑖𝑑𝑥] × S𝐶 [𝑖𝑑𝑥] + 𝑡)/(S𝐶 [𝑖𝑑𝑥] + 1)
4 𝑑𝑤 ← Distance(𝜇𝐶 [𝑖𝑑𝑥], 𝜇

′) + R𝐶 [𝑖𝑑𝑥]
5 𝑑𝑡 ← Distance(𝑡, 𝜇′)
6 𝑑

′ ← Max(𝑑𝑡 , 𝑑𝑤)
7 𝑑𝑛, 𝑑𝑎 ← Max(R𝐶 [P𝑛]),Max(R𝐶 [P𝑎])
8 if 𝑖𝑑𝑥 ∈ P𝑎 then 𝑑 ← 𝑑𝑎 else 𝑑 ← 𝑑𝑛 end
9 if D𝑡 [𝑖𝑑𝑥] < 𝑑 then

// add 𝑡 to the most similar cluster

10 𝜇𝐶 [𝑖𝑑𝑥],S𝐶 [𝑖𝑑𝑥],R𝐶 [𝑖𝑑𝑥] ← 𝜇
′
,S𝐶 [𝑖𝑑𝑥] + 1, 𝑑

′

11 if S𝐶 [𝑖𝑑𝑥] > Max(S𝐶 [P𝑎]) and 𝑖𝑑𝑥 𝑖𝑠 𝑎 𝑛𝑒𝑤 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

then
12 P𝑛 ← Append P𝑛 with 𝑖𝑑𝑥
13 P𝑎 ← Remove 𝑖𝑑𝑥 from P𝑎
14 else
15 𝑑 ← Max(𝑑,𝑑′) // 𝑑 will be assigned to 𝑑𝑛

or 𝑑𝑎 accordingly

16 end
17 else

// create a new anomalous cluster for 𝑡

18 P𝑎 ← Append P𝑎 with Length(𝜇C) + 1
19 𝜇𝐺 ← Append 𝜇𝐺 with 𝑡

20 R𝐶 ← Append R𝐶 with 0
21 S𝐶 ← Append S𝐶 with 1
22 end

mean vector of each cluster, i.e., 𝜇𝐶 . Thus, instead of keeping all its
members (which is storage-intensive), the clusters can be simply
represented by their mean vectors.

Note that the offline and online anomaly detection can work
collaboratively as a performance anomaly detector without the
interpretability component, which requires human intervention.

So far the metric patterns for anomaly detection are discovered
based on historical data. However, due to the dynamics of online
service systems (e.g., software upgrade, customer behavior change),
the metrics may experience concept drift [11, 12], which produces
brand-new patterns. Thus, an adaptive learning mechanism is desir-
able to help adapt to such unprecedented patterns and update the
metric patterns accordingly. In the next section, we will introduce
the algorithm to this end called adaptive pattern learning.

3.3.2 Adaptive Pattern Learning. The algorithm of adaptive pat-
tern learning is presented in Algorithm 3, which automatically
updates metric patterns during streaming anomaly detection. To
start with, for each cluster, we calculate its size and the maximum
distance between its mean vector and all members (which we refer
to as radius), denoted as S𝐶 and R𝐶 , respectively. In particular, the
size and radius of clusters with only a single member are one and
zero. For adaptive pattern learning, all clusters can be sufficiently

!!
!![#$%]

"

#"

##ℛ![#$%]

metric subsequence mean vector

!!
!![#$%]

"

#"

##
ℛ![#$%]

tangent

normal

tangent

!!
!![#$%]

"

#"

##
ℛ![#$%]

normal

"$ "$

Figure 5: The update of the radius of a cluster

represented with the following properties: 𝜇𝐶 , S𝐶 , and R𝐶 . All
subsequences can be discarded.

The main idea is that given a new subsequence 𝑡 , we determine
whether it possesses a known metric pattern carried by an exist-
ing cluster. If yes, the cluster will absorb 𝑡 as a new member and
update its properties; otherwise, a brand-new anomalous cluster
with only 𝑡 itself will be created, representing an unseen metric
pattern. Specifically, we first search for the closest pattern of 𝑡
(line 1-2). Then, we determine whether 𝑡 should become a new
member to the corresponding cluster by checking if the distance
D𝑡 [𝑖𝑑𝑥] is smaller than the largest radius recorded in all clusters,
i.e., D𝑡 [𝑖𝑑𝑥] ≤ Max(R𝐶). If it is the case, 𝑡 should be considered
as an old pattern; otherwise, it should be expressing a new pattern.

When a cluster accepts a new member (line 9-16), we need to up-
date its mean vector 𝜇𝐶 [𝑖𝑑𝑥] (i.e., the metric pattern), size S𝐶 [𝑖𝑑𝑥],
and radius R𝐶 [𝑖𝑑𝑥]. For 𝜇𝐶 [𝑖𝑑𝑥], it can be precisely updated by
the equation at line 3 (i.e., 𝜇

′
). S𝐶 [𝑖𝑑𝑥] can be trivially updated by

increasing itself by one. The update of the radius R𝐶 [𝑖𝑑𝑥] is a bit
problematic. We cannot directly calculate the new radius as the
original subsequences are not available. To address this problem,
we employ the worst-case distance for approximation. As shown
in Fig. 5, the new radius reaches its maximum value when 𝑡 lies in
the (inward-pointing) normal of the tangent space at the member
yielding the radius (denoted as 𝑡𝑟) [3], which can be calculated by
the equation at line 4. We omit the proof, which is standard. Two
cases are possible. The first (the left subfigure) is that 𝑡𝑟 contin-
ues to be the farthest member from the new mean 𝜇

′
. The second

(the right subfigure) is that 𝑡 takes the place of 𝑡𝑟 and becomes the
farthest one. Therefore, besides 𝑑𝑤 , we also compute the distance
between 𝑡 and 𝜇

′
, i.e., 𝑑𝑡 , and compare them (line 4-6). The bigger

one will be the new radius (line 10). Recall we need to check if
D𝑡 [𝑖𝑑𝑥] ≤ Max(R𝐶) to decide whether or not 𝑡 should be taken
as a new member. Considering the high imbalance between normal
and abnormal clusters, we maintain two maximum radii for them,
denoted as 𝑑𝑛 and 𝑑𝑎 , respectively (line 7). Once a cluster alters
its radius, we reset the maximum radius of its kind (𝑑𝑛 or 𝑑𝑎 as
determined by line 8) if it is exceeded by 𝑑

′
(line 15). On the other

hand, if the cluster rejects 𝑡 , we form a new anomalous cluster
containing only 𝑡 by properly setting its properties (line 18-21).

An issue with this strategy is that false positives will accumulate
in P𝑎 as the unseen patterns can also be normal. We alleviate it

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

by setting a threshold to the size of the newly-formed anomalous
clusters (line 11). The role of the cluster will be switched from
abnormal to normal if its size exceeds the threshold (line 12-13).
The rationale is that performance anomalies are generally rare
events. A large anomalous cluster would mean the particular type
of issue it represents occurs too often. However, a pattern with a
large frequency tends to be the metric’s normal behavior. In this
paper, we simply set the default threshold as the largest size of the
anomalous clusters identified in the offline stage, i.e.,Max(S𝐶 [P𝑎]).
Nevertheless, more sophisticated strategies can be applied by, for
example, considering the distribution of clusters’ sizes.

3.4 Time and Space Complexity
3.4.1 Time Complexity. For Algorithm 1, the theoretical time com-
plexity of operation STAMP is O(𝑛2). Thus, line 1-2 require O(𝑙2𝑛)
and O(𝑙2𝑎), respectively, where 𝑙𝑛 and 𝑙𝑎 are the length of T𝑛 and
T𝑎 . Another operation with an interesting time complexity is the
affinity propagation algorithm (line 7), whose complexity is qua-
dratic in the number of clusters (which is often small), i.e., O(|𝐶 |2).
Other operations are of trivial linear time complexity, which is
also the case for Algorithm 2 and Algorithm 3. Overall, ADSketch
owns a time complexity of O(𝑛2) (O(𝑙2𝑛 + 𝑙2𝑎 + |𝐶 |2)). Fortunately,
unlike other models such as deep neural networks, STAMP can
be embarrassingly parallelized by distributing its unit operation
(SPW distance calculation) to multi-core processors [36]. Moreover,
STAMP has an ultra-fast approximation to generate results in an
anytime fashion.

3.4.2 Space Complexity. As described in Sec. 3.3.2, pattern clusters
have a lightweight representation, i.e., 𝜇𝐶 ,S𝐶 , andR𝐶 .We also need
P𝑛 and P𝑎 to distinguish anomalous patterns from the normal ones.
Besides 𝜇𝐶 whose space complexity is O(𝑚 × |𝐶 |), other vectors
are of O(|𝐶 |). Therefore, the dominant term of space complexity
is O(𝑚 × |𝐶 |). Since both𝑚 and |𝐶 | are usually small, the space
overhead of ADSketch can be considered trivial.

4 EXPERIMENTS
In this section, we evaluate ADSketch using both public data and
real-world metric data collected from the industry. Particularly, we
aim at answering the following research questions.

RQ1: How effective is ADSketch’s offline anomaly detection?
RQ2: How effective is ADSketch’s online anomaly detection?
RQ3: How effective is ADSketch’s adaptive pattern learning?
The evaluation process of much existing work, e.g., [29, 32],

essentially corresponds to the process adopted in RQ1 (i.e., the
offline anomaly detection phase), because the threshold they select
for anomaly alerting is determined by iterating the full range of
its possible values. The best results achieved during the iteration
process are reported. To fully examine the performance of different
methods in online scenarios, we fix models’ data and parameters
(including the threshold learned in offline mode) as if they are
deployed in production systems, i.e., RQ2. The online adaptability
of ADSketch will be evaluated in RQ3.

4.1 Experiment Setting
4.1.1 Dataset. To evaluate the effectiveness of ADSketch in perfor-
mance anomaly detection, we conduct experiments on two publicly

Table 2: Dataset Statistics

Dataset #Curves #Points Anomaly Ratio

Yahoo 67 94,866 1.8%
AIOps18 58 5,922,913 2.26%
Industry 436 4,394,880 1.07%

available datasets. Moreover, to confirm its practical significance,
we collect a production dataset from a large-scale online service of
Huawei Cloud. Table 2 summarizes the statistics of the datasets.

Public dataset. The public datasets for experiments are Ya-
hoo [30] and AIOps18 [2, 29]. Particularly, we do not conduct online
anomaly detection on Yahoo due to its limited number of anomalies.
• Yahoo. Yahoo released by Yahoo! Research [30] is a bench-
mark dataset for time series anomaly detection. Part of the
dataset is synthetic (which is simulated by algorithmically
injecting anomalies), and part of the dataset is collected from
the real traffic of Yahoo services. The anomalies in the real
dataset are manually labeled. All time series are sampled ev-
ery hour. In particular, as our goal is detecting performance
anomalies for online services, we only use the real dataset,
which reflects the real-world service performance issues. For
each time series, we select the first 300 data points as the
anomaly-free input (any anomalies are ignored), while the
remaining part as the input for offline anomaly detection.
• AIOps18. AIOps18 dataset was released by an international
AIOps competition held in 2018 [1]. The dataset is composed
of multiple metric time series collected from the web services
of large-scale IT companies. Particularly, the dataset contains
two types of metrics, i.e., service metrics and machine met-
rics. The service metrics record the scale and performance
of the web services, including response time, traffic, con-
nection errors; while the machine metrics reflect the health
states of physical machines, including CPU usage, network
throughput. Some metric time series has a sampling interval
of one minute, while that of others is five minutes. Each
metric has a training and a testing time series. Thanks to its
large quantity, we follow the following procedure to separate
the data for ADSketch offline and online anomaly detection.
First, we extract a small part of the training time series that is
anomaly-free, which often contains thousands of data points.
Then, we use the remainder of the training time series for
offline anomaly detection. Finally, the whole testing time
series will be employed for online anomaly detection. We
also compare the performance of online anomaly detection
with and without the adaptive learning component.

Industrial dataset. To evaluate ADSketch in production sce-
narios, we collect various metrics (e.g., Application CPU Usage,
Interface Throughput, Request Timeout Number, Round-trip De-
lay) from a large-scale online service (we conceal the name for
privacy concern) of Huawei Cloud. The system under study pro-
duces millions of metric time series, which contain an abundance
of different metric patterns. The number of metric curves collected
is 436, which come from multiple instances of virtual machines,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

containers, and applications of the selected service system. For each
metric, we collect one week of data with a sampling interval of one
minute, resulting in more than four million data points in total. The
anomalies representing the performance issues of the service are
labeled by experienced domain engineers. From Table 2, we can
see that the anomaly ratio is very low. Particularly, we use the first
day as the anomaly-free input, whose anomalies (if any) are simply
ignored. The next three days are used for offline anomaly detection.
Finally, we conduct online anomaly detection on the remaining
three days, where we also evaluate the adaptability of different
approaches to unseen anomaly patterns.

4.1.2 Evaluation Metrics. As anomaly detection is essentially a
binary classification problem, i.e., normal and abnormal, we employ
precision, recall, and F1 score for evaluation. They can gauge the per-
formance of an anomaly detection algorithm at a fine-grained level.
A satisfactory algorithm should be able to quickly and precisely
detect both the occurrence and duration of performance anomalies.
Specifically, precision measures the percentage of anomalous met-
ric points that are successfully identified as anomalies over all the
metric points that are predicted as anomalous: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 .
Recall calculates the portion of anomalous metric points that are
successfully identified by ADSketch over all the actual anomalous
points: 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 . Finally, the F1 score is the harmonic mean
of precision and recall: 𝐹1 𝑆𝑐𝑜𝑟𝑒 =

2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 . 𝑇𝑃 is the

number of anomalous metric points that are correctly discovered
by ADSketch; 𝐹𝑃 is the number of normal metric points that are
wrongly predicted as an anomaly by ADSketch; 𝐹𝑁 is the number
of anomalous metric points that ADSketch fails to notice. Since
there are multiple metrics in each dataset, we report their average
weighted by the size of each metric time series.

4.1.3 Comparative Methods. The following methods are selected
for comparative evaluation of ADSketch. As all baselines have
open-sourced their code, we directly borrow the implementations
and follow the procedure of model training and parameter tuning
introduced in each method.

• LSTM [15, 37]. This method employs Long Short-Term Mem-
ory (LSTM) network to capture the normal behaviors of met-
rics in a forecasting-based manner. Specifically, it predicts
the next values of ametric based on its past observations. The
predicted values are then compared with the actual values.
Anomaly warnings will be raised if the differences exceed
the pre-defined thresholds.
• Donut [34]. Donut adopts the Variational Autoencoder (VAE)
framework to properly reconstruct the normal metric subse-
quences. The trained model will have a large reconstruction
loss when it meets anomalous instances, which serves as the
signal to alert anomalies.
• LSTM-VAE [25]. Similar to Donut, this work detects anom-
alies based on metric subsequence reconstruction. It com-
bines LSTM and VAE in the model design.
• LODA [26]. LODA is an online anomaly detector based on
the ensemble of a series of one-dimensional histograms. Each
histogram approximates the probability density of input data
projected onto a single projection vector. LODA calculates

the likelihood of an anomaly based on the joint probability
of the projections.
• iForest [19]. Isolation Forest (iForest) is composed of a col-
lection of isolation trees, which isolates anomalies based
on random subsets of the input features. The height of an
input sample, averaged over the trees, is a measure of its
normality. Samples with noticeably shorter heights are likely
to be anomalies. We use metric subsequences as the input
samples.
• DAGMM [39]. DAGMM utilizes a deep autoencoder to gen-
erate a low-dimensional representation for each input data
point, which is further fed into a Gaussian Mixture Model
to estimate the anomaly score.
• SR-CNN [29]. SR-CNN first applies Spectral Residual to high-
light the most important regions for seasonal metric data
where anomalies often reside. It then trains a Convolutional
Neural Network (CNN) through synthetic anomalies to de-
tect the real anomalies.

4.2 Experimental Results
4.2.1 RQ1 The Effectiveness of ADSketch’s Offline Anomaly Detec-
tion. To answer this research question, we compare ADSketch with
the baselines in the offline setting. The results are shown in Table 3,
where we can see the average F1 score of ADSketch outperforms
all baseline methods in all datasets. In AIOps18 and Industry, the
improvement achieved by ADSketch is more significant. In partic-
ular, the patterns of anomalies in Yahoo are relatively simple. By
iterating over all possible values of the anomaly threshold, the base-
lines can find the best setting for the dataset under study. Among
them, LSTM [15, 37] and Donut [34] achieve comparable perfor-
mance compared to that of ADSketch (i.e., 0.541), whose average
F1 scores are 0.53 and 0.524, respectively. Moreover, LSTM [15, 37]
has the best recall (i.e., 0.706), while the best precision (i.e., 0.754)
goes to LODA [26]. DAGMM and SR-CNN turn out to be the worst
methods in this dataset. In terms of AIOps18 and Industry datasets,
we can see ADSketch surpasses the baselines by a larger margin.
Specifically, the average F1 score of ADSketch in AIOps18 is 0.677,
while that of the second-best method (i.e., LSTM-VAE) is 0.537.
ADSketch also attains the best precision and recall. In AIOps18, the
anomaly patterns are much more complicated. Baselines tend to
predict more data points as anomalous, leading to a lower precision.
Different from them, ADSketch is able to precisely capture them
and outperforms other methods. The situation is similar in Indus-
try. Particularly, this dataset is collected from online services, and
many of its metric curves possess more perceivable and regular pat-
terns. Thus, all methods perform better in this dataset than in the
other two. The average F1 scores of ADSketch and the second-best
method (i.e., LSTM) are 0.740 and 0.632, respectively.

In Table 3, we can see among all comparative methods, LSTM and
LSTM-VAE have better overall performance, which are forecasting-
based and reconstruction-based methods, respectively. They both
try to model the normal patterns of a metric time series and alert
anomalies once the metric significantly deviates from the learned
patterns. The difference is that a forecasting-based method aims to
predict the next metric values and a reconstruction-based method
tries to encode and regenerate metric subsequences. We can see

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Experimental Results of Offline Anomaly Detection

Yahoo AIOps18 Industry
Method precision recall F1 score precision recall F1 score precision recall F1 score

LSTM 0.598 0.706 0.530 0.499 0.531 0.518 0.704 0.656 0.632
LSTM-VAE 0.622 0.634 0.484 0.510 0.625 0.537 0.717 0.639 0.622
Donut 0.530 0.658 0.524 0.405 0.527 0.382 0.693 0.628 0.604
LODA 0.754 0.583 0.428 0.553 0.429 0.401 0.583 0.498 0.529
iForest 0.713 0.597 0.437 0.555 0.439 0.413 0.616 0.567 0.538
DAGMM 0.643 0.517 0.401 0.590 0.477 0.461 0.597 0.542 0.530
SR-CNN 0.433 0.618 0.307 0.424 0.387 0.363 0.519 0.471 0.434
ADSketch 0.511 0.673 0.541 0.744 0.670 0.677 0.811 0.813 0.740

Table 4: Experimental Results of Online Anomaly Detection

AIOps18 Industry
Method prec. rec. F1 prec. rec. F1

LSTM 0.425 0.462 0.408 0.612 0.606 0.592
LSTM-VAE 0.336 0.521 0.389 0.624 0.598 0.601
Donut 0.431 0.326 0.376 0.662 0.581 0.590
LODA 0.407 0.397 0.355 0.653 0.526 0.503
iForest 0.397 0.334 0.322 0.576 0.507 0.487
DAGMM 0.392 0.367 0.378 0.557 0.538 0.502
SR-CNN 0.329 0.288 0.307 0.438 0.422 0.410
ADSketch 0.543 0.575 0.507 0.705 0.603 0.606

Table 5: Experimental Results of Adaptive Pattern Learning

AIOps18 Industry
Method prec. rec. F1 prec. rec. F1

LODA 0.424 0.405 0.387 0.623 0.512 0.548
ADSketch 0.594 0.557 0.548 0.882 0.856 0.832

except for LSTM-VAE in Yahoo, these two methods attain the best
results compared to other baseline counterparts in the other two
datasets. However, LSTM lacks the ability to explicitly detect anom-
alies in the level of subsequence. Many anomalies are composed
of a collection of anomalous points corresponding to the period
of performance issues. LSTM-VAE does not take into account the
relationship among subsequences. Many suspicious subsequences
are not necessarily anomalies if they often occur in the history
of the service systems. Compared to them, ADSketch is able to
simultaneously learn the subsequence-level features and consider
the context of metric time series.

4.2.2 RQ2 The Effectiveness of ADSketch’s Online Anomaly De-
tection. We also compare ADSketch against the selected methods
for online anomaly detection. Table 4 presents the experimental
results. Except for Donut in AIOps18, all models and algorithms
encounter an obvious performance degradation in both datasets.
Nevertheless, ADSketch manages to maintain the best ranking

(0.507 in AIOps18 and 0.606 in Industry), which is followed by
LSTM (0.408 in AIOps18) and LSTM-VAE (0.601 in Industry). Partic-
ularly, in AIOps18, the average F1 score of different methods drops
by 11%-27%. This observation demonstrates the existence of un-
precedented metric patterns in online scenarios. By relying on the
"outdated" data and parameters (e.g., ADSketch’s metric patterns
and baselines’ anomaly thresholds) learned from the offline stage,
the methods cannot accommodate them. In addition, by plotting
the metric time series, we observe the emergence of concept drift
on metrics. This can be caused by software upgrades or the integra-
tion of new service components (e.g., virtual machines, containers).
In the industrial dataset, the evaluation results of the baselines
are more promising (i.e., the average F1 score drops by less than
10%). This is because the anomalies are triggered by real-world
performance issues. The issues have a more natural distribution,
and the collected metrics exhibit relatively stable patterns. ADS-
ketch presents a significant performance degradation. We found it
is because in some cases, the two metric time series fed to the of-
fline stage are often both anomaly-free. Consequently, no abnormal
patterns will be learned, disabling ADSketch to detect anomalies in
the online stage. Therefore, when designing an anomaly detection
algorithm, adaptability is indispensable.

4.2.3 RQ3 The Effectiveness of ADSketch’s Adaptive Pattern Learn-
ing. This research question looks into the issue of online adaptabil-
ity. Particularly, we only compare ADSketch with LODA, which is
the only baseline method with the design of online learning. Similar
to RQ2, we only conduct experiments with AIOps18 and Industry
datasets. Table 5 shows the experimental results, where we can see
ADSketch’s adaptive pattern learning indeed brings performance
gains. With more anomalous patterns identified, ADSketch is able
to detect anomalies more accurately, i.e., a better precision (0.594 in
AIOps18 and 0.882 in Industry). The average F1 score also enjoys
some improvements, i.e., 0.548 in AIOps18 and 0.832 in Industry.
Particularly, in the industrial case, adaptive ADSketch achieves
a performance of over 0.8 in all evaluation metrics (even in some
cases without any abnormal patterns learned from the offline stage).
Such an achievement indicates its potential to meet the industrial
requirements of performance anomaly detection. On the other hand,
the online version of LODA does not show much performance im-
provement (i.e., an average F1 score of 0.387 in AIOps18 and 0.548

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

8 10 12 14 16 18 20 22
Pattern Length (m)

0.4

0.5

0.6

0.7

0.8

0.9

Av
g.

 F
1

Sc
or

e

97.0 97.5 98.0 98.5 99.0 99.5 100.0
Percentile Threshold (p)

0.4

0.5

0.6

0.7

0.8

0.9
Offline Online Adaptive Online

Figure 6: Parameter Sensitivity

in Industry), which even falls behind some methods without the
capability of online learning.

4.2.4 Parameter Sensitivity. In ADSketch, there are only two pa-
rameters to tune (both in Algorithm 1), i.e., the pattern length
𝑚 and the percentile threshold 𝑝 for identifying deviated metric
subsequences. We evaluate the sensitivity of ADSketch to these
two parameters by conducting experiments with different settings.
Due to space limitations, we only show the results of the Indus-
try dataset. The default value of𝑚 and 𝑝 for the dataset is 15 and
99.5th, respectively. We fix one parameter and employ a different
setting for the other one. Specifically,𝑚 ranges from 9 to 21, and 𝑝
varies from 97th to 99.8th. Fig. 6 presents the results. Performance
degradation is observed in both offline and online stages when
the two parameters deviate from their default setting. The offline
stage exhibits a greater sensitivity, and thus, less anomalous met-
ric patterns are captured. Nevertheless, both the online anomaly
detection and adaptive pattern learning algorithms achieve stable
performance with a smaller set of abnormal patterns. This further
confirms ADSketch’s capability of new pattern discovery.

5 INDUSTRIAL PRACTICE
5.1 Online Deployment
Since October 2020, ADSketch has been successfully incorporated
into the performance anomaly detection system of a large-scale
online service system in Huawei Cloud. The deployment process
can be easily done by leveraging the existing data analytics pipeline,
for example, data consumption by Apache Kafka [16], and online
parallel execution by Apache Flink [9]. After months of usage, ADS-
ketch has demonstrated its effectiveness on metric-based system
troubleshooting. A lot of positive feedback has been received from
on-site engineers. Particularly, engineers confirmed its superior-
ity in anomaly detection over the current algorithms (e.g., fixed
thresholding, moving average) in operation. One typical case is
multiple benign spikes arriving suddenly and consecutively. ADS-
ketch is able to quickly figure out that such recurrent spikes have
happened before, which reduces the number of false alerts. In terms
of issue understanding, engineers benefited from ADSketch by hav-
ing readily-available descriptions about the anomaly symptoms.
Therefore, we have initialized a project of metric pattern database
construction. ADSketch is continuously accumulating anomalous
patterns in the database. Moreover, engineers also expressed the
need for metric pattern auto-correlation across different metrics.
This is because multiple anomalies collectively could constitute a

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

Application CPU Usage

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

Interface Throughput

0 2000 4000 6000 8000 10000
Time

0.0

0.5

1.0

Requests Per Minute

Figure 7: Case Study of ADSketch

stronger performance issue indicator. We leave the identification
of such correlations to our future work.

5.2 Case Study
We provide some case studies of ADSketch collected from produc-
tion systems in Fig. 7, where anomalies are indicated by the red
lines. Due to space limitations, we only showcase three metric time
series. Clearly, all anomalous metric patterns have been success-
fully located regardless of shape, scale, and length. Each metric
time series possesses at least two types of anomalous patterns, e.g.,
level shifts and spikes. Interestingly, we found the depression in the
second metric can help catch a similar pattern in the third metric,
demonstrating the feasibility of cross-metric pattern sharing. More-
over, engineers confirmed that these patterns are typical, based on
which they can make a good guess about the ongoing issues. For
example, the spikes often come from user request surge or network
attack; the depressions in the second and third metrics often in-
dicate service restart or link flap. To quantify the interpretability
of ADSketch, we label the recurrent performance issues and em-
ploy the learned metric patterns to identify them. As performance
issues may contain uncertainty [33], we allow one pattern to be
associated with multiple labels simultaneously (Sec. 3.2.2). During
the evaluation, an anomaly interpretation is considered correct if
the predicted performance issue appears in the label set. In our
experiments, ADSketch attains a promising F1 score of 0.825. This
demonstrates the potentials of ADSketch in providing interpretable
results to engineers, which can greatly accelerate the investigation
of service performance issues.

5.3 Threats to Validity
We have identified the following major threats to validity.

Internal threats. The implementation and parameter selection
are two critical internal threats to the validity. To reduce the im-
plementation threat, we directly borrow the codes released by the
baseline approaches. For the proposed approach, we employ peer
code review, i.e., the authors are invited to carefully check the imple-
mentation for mistakes. In terms of parameter selection, we conduct
multiple comparative experiments with different parameters for all
methods. We choose the parameter settings empirically based on
the best results.

External threats. The selection of the service system and the
baselines are two main external threats to validity. We choose a

Adaptive Performance Anomaly Detection for Online Service Systems via Pattern Sketching ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

large-scale online service of Huawei Cloud, which producesmillions
of metrics with diverse patterns. Moreover, we detect anomalies by
following the basic definition of an anomaly, i.e., the data point that
deviates from the majority in a dataset. Thus, ADSketch is general-
izable to other systems. For baselines, we select the representative
ones in the literature, covering a wide spectrum of techniques.

Construct threats. The main construct threat to validity is that
the anomaly-free input (i.e., T𝑛) to Algorithm 1 actually contains
anomalies. Although anomaly-free data are easily obtainable in
reality, false negatives could happen if the data are contaminated.
We alleviate this issue by applying percentile thresholding to T𝑛 .
Specifically, after obtaining the closest subsequence pairs in T𝑛 , we
break the connection between those having a distance above the
percentile threshold. Thus, the set of anomaly candidates, i.e., 𝑁𝑖 ,
becomes larger. If T𝑛 is indeed clean, this operation is harmless
as the (isolated) normal metric subsequences can be grouped with
other similar ones again; if not, theywill stay isolated and eventually
be recognized as anomalies. We have also conducted experiments
on some cases where T𝑛 contains anomalies, and the results show
its effectiveness.

6 RELATEDWORK
Performance anomaly detection on time series has been a hot topic.
Monitoring metrics used to profile the runtime status of a system
are usually denoted as multiple univariate time series. In the litera-
ture, anomaly detection methods on time series can be categorized
into statistical, traditional machine learning, and deep learning
approaches. In industry, Autoregressive Moving Average Model
(ARMA) [5] remains the most popular statistical method to detect
obvious anomalous data points from univariate time series. To cap-
ture complex anomalous patterns, Ma et al. [22] summarized several
type-oriented patterns from the metrics of cloud databases to diag-
nose the performance degradation in associated online services.

More complex pattern recognitionmethods utilizemachine learn-
ing based models. For example, unsupervised clustering methods
can be used to detect anomalous points in time-series data. Similar
to our work, Pang et al. [24] proposed a clustering-based statistical
model called LeSiNN to detect anomaly patterns from history. How-
ever, it is not robust in real industry practices due to complicated
parameter tuning. With the assumption that anomalous data should
be in smaller numbers and isolated from a large number of normal
observations, Isolation Forest (iForest) [19] employs multiple binary
trees to distinguish anomalies in non-linear space. Extreme Value
Theory (EVT) [31] learns the hidden state of a random variable
around the tails of its distribution to adaptively enhance the perfor-
mance of many statistical and machine learning methods. However,
EVT heavily relies on hyperparameter tuning.

In recent years, there has been an explosion of interest in apply-
ing neural networks to conduct anomaly detection on time-series
data. For example, Zong et al. [39] proposed a deep autoencoding
Gaussian mixture model (DAGMM) to detect anomalous data points
from each observed data without considering the temporal depen-
dencies in time series. To detect complex anomalies in spacecraft
monitoring systems, LSTM-NDT [15] leverages Long Short-Term
Memory (LSTM) networks with nonparametric dynamic thresh-
olding to pursue interpretability throughout the systems. Zhao et

al. [37] and Lin et al. [17] also employed LSTM to predict perfor-
mance anomalies in software systems. Inspired by the Spectral
Residual algorithm in other domains, Ren et al. [29] proposed SR-
CNN to detect anomalies from seasonal metric data for large-scale
cloud services, which contain the periodic recurrence of fluctua-
tions. DONUT [34] designs an unsupervised anomaly detection
method based on the Variational Auto-Encoder (VAE) framework
to detect anomalies from low-qualified seasonal metric time series
with various patterns. DONUT provides a theoretical explanation
compared to other deep learning methods. LSTM-VAE [25] com-
bines LSTM networks and the VAE framework to reconstruct the
probability distribution of observed data in time series. However,
LSTM-VAE ignores the temporal dependencies in time series. Omni-
Anomaly [32] learns the normal patterns using a large collection of
historical data. The anomalous patterns are located from the large
margin of reconstruction loss to the normal patterns. However,
the aforementioned deep learning-based methods usually follow
an end-to-end style and play as a black box inside. Due to poor
interpretability, the detection results cannot provide engineers with
actionable suggestions for fault diagnosis. Furthermore, all these
methods have difficulties handling unseen metric patterns brought
by the frequent updates of online services.

7 CONCLUSION
In this paper, we propose ADSketch, a performance anomaly detec-
tion approach based on pattern sketching. By extracting normal and
abnormal patterns frommetric time series, anomalies can be quickly
detected through a comparison with the identified patterns. By asso-
ciating metric patterns with typical performance issues, ADSketch
can provide interpretable results when any known patterns appear
again. Moreover, we design an adaptive learning algorithm to help
ADSketch embrace unprecedented metric patterns during online
anomaly detection. We have conducted experiments on two public
datasets and one production dataset collected from a representative
online service system of Huawei Cloud. For offline anomaly detec-
tion where models’ parameters are still being tuned, ADSketch has
achieved the highest F1 score, outperforming the existing meth-
ods by a significant margin. For online anomaly detection where
models are fixed, ADSketch safeguards its best rankings. Finally,
the adaptive pattern learning brings noticeable performance gains,
especially in the industrial dataset. From our industrial practice, we
have witnessed it shedding light on accurate and interpretable per-
formance anomaly detection, which confirms its practical benefits
conveyed to Huawei Cloud. We believe ADSketch is able to assist
engineers in service failure understanding and diagnosis.

For future work, we will extend our algorithms to multivariate
metric time series. We will also try to provide more detailed in-
formation about failures by exploring the correlations among the
metric patterns.

ACKNOWLEDGMENTS
The work was supported by the Guangdong Key Research Program
(No. 2020B010165002), the Research Grants Council of the Hong
Kong Special Administrative Region, China (CUHK 14210920), and
Australian Research Council (ARC)Discovery Projects (DP200102940
and DP220103044).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang, Xiao Ling, Yongqiang Yang, and Michael R. Lyu

REFERENCES
[1] 2018. KPI Anomaly Detection Competition. Retrieved April, 2021 from http:

//iops.ai/competition_detail/?competition_id=5&flag=1
[2] 2018. KPI Anomaly Detection Dataset. Retrieved April, 2021 from http://iops.ai/

dataset_detail/?id=10
[3] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-

mization. Cambridge university press.
[4] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, María S Pérez,

and Victor Muntés-Mulero. 2020. Graph-based root cause analysis for service-
oriented and microservice architectures. Journal of Systems and Software 159
(2020), 110432.

[5] Marcus J Chambers and Michael A Thornton. 2012. Discrete time representation
of continuous time ARMA processes. Econometric Theory (2012), 219–238.

[6] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui Xu, Yangfan
Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, et al. 2020. Towards intelligent incident
management: why we need it and how we make it. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1487–1497.

[7] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: real-world chal-
lenges and research innovations. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 4–5.

[8] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. 2015.
Experience report: Anomaly detection of cloud application operations using log
and cloud metric correlation analysis. In 2015 IEEE 26th international symposium
on software reliability engineering (ISSRE). IEEE, 24–34.

[9] Apache Flink. 2011. [Online]. https://flink.apache.org/.
[10] Brendan J Frey and Delbert Dueck. 2007. Clustering by passing messages between

data points. science 315, 5814 (2007), 972–976.
[11] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 1–37.

[12] Shujie Han, Patrick PC Lee, Zhirong Shen, Cheng He, Yi Liu, and Tao Huang.
2020. Toward adaptive disk failure prediction via stream mining. In Proceedings
of IEEE ICDCS.

[13] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
60–70.

[14] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R Lorch, Yingnong Dang,
Murali Chintalapati, and Randolph Yao. 2017. Gray failure: The achilles’ heel
of cloud-scale systems. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems. 150–155.

[15] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. 2018. Detecting spacecraft anomalies using lstms and nonpara-
metric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining. 387–395.

[16] Apache Kafka. 2011. [Online]. https://kafka.apache.org/.
[17] Qingwei Lin, Ken Hsieh, Yingnong Dang, Hongyu Zhang, Kaixin Sui, Yong

Xu, Jian-Guang Lou, Chenggang Li, Youjiang Wu, Randolph Yao, et al. 2018.
Predicting node failure in cloud service systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 480–490.

[18] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 102–111.

[19] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[20] Chang Lou, Peng Huang, and Scott Smith. 2020. Understanding, detecting and
localizing partial failures in large system software. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). 559–574.

[21] Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang, and Tao
Xie. 2013. Software analytics for incident management of online services: An
experience report. In 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 475–485.

[22] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-
hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, et al. 2020. Diagnosing
root causes of intermittent slow queries in cloud databases. Proceedings of the
VLDB Endowment 13, 10 (2020), 1176–1189.

[23] Ryan Mercer, Sara Alaee, Alireza Abdoli, Shailendra Singh, Amy Murillo, and
Eamonn Keogh. 2021. Matrix Profile XXIII: Contrast Profile: A Novel Time
Series Primitive that Allows Real World Classification. In The IEEE International
Conference on Data Mining.

[24] Guansong Pang, Kai Ming Ting, and David W. Albrecht. 2015. LeSiNN: Detecting
Anomalies by Identifying Least Similar Nearest Neighbours. In IEEE Interna-
tional Conference on Data Mining Workshop, ICDMW 2015, Atlantic City, NJ, USA,
November 14-17, 2015. IEEE Computer Society, 623–630.

[25] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. 2018. A multimodal anomaly
detector for robot-assisted feeding using an lstm-based variational autoencoder.
IEEE Robotics and Automation Letters 3, 3 (2018), 1544–1551.

[26] Tomáš Pevnỳ. 2016. Loda: Lightweight on-line detector of anomalies. Machine
Learning 102, 2 (2016), 275–304.

[27] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang
Sun, and Bin Wang. 2003. Automated support for classifying software failure
reports. In 25th International Conference on Software Engineering, 2003. Proceedings.
IEEE, 465–475.

[28] Thanawin Rakthanmanon and Eamonn Keogh. 2013. Fast shapelets: A scalable
algorithm for discovering time series shapelets. In proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 668–676.

[29] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou,
Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-series anomaly detec-
tion service at microsoft. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3009–3017.

[30] Yahoo! Research. 2015. A Benchmark Dataset for Time Series Anomaly De-
tection. Retrieved August, 2021 from https://yahooresearch.tumblr.com/post/
114590420346/a-benchmark-dataset-for-time-series-anomaly

[31] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët.
2017. Anomaly Detection in Streams with Extreme Value Theory. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Halifax, NS, Canada, August 13 - 17, 2017. ACM, 1067–1075.

[32] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
anomaly detection for multivariate time series through stochastic recurrent
neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2828–2837.

[33] Catia Trubiani, Pooyan Jamshidi, Jurgen Cito, Weiyi Shang, Zhen Ming Jiang,
and Markus Borg. 2018. Performance issues? Hey DevOps, mind the uncertainty.
IEEE Software 36, 2 (2018), 110–117.

[34] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. 2018. Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis in web applications. In
Proceedings of the 2018 World Wide Web Conference. 187–196.

[35] Dragomir Yankov, Eamonn Keogh, and Umaa Rebbapragada. 2008. Disk aware dis-
cord discovery: Finding unusual time series in terabyte sized datasets. Knowledge
and Information Systems 17, 2 (2008), 241–262.

[36] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,
Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. 2016.
Matrix profile I: all pairs similarity joins for time series: a unifying view that
includes motifs, discords and shapelets. In 2016 IEEE 16th international conference
on data mining (ICDM). IEEE, 1317–1322.

[37] Guoliang Zhao, Safwat Hassan, Ying Zou, Derek Truong, and Toby Corbin. 2021.
Predicting Performance Anomalies in Software Systems at Run-time. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021),
1–33.

[38] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and
Eamonn Keogh. 2018. Matrix profile XI: SCRIMP++: time series motif discovery
at interactive speeds. In 2018 IEEE International Conference on DataMining (ICDM).
IEEE, 837–846.

[39] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In International Conference on Learning
Representations.

http://iops.ai/competition_detail/?competition_id=5&flag=1
http://iops.ai/competition_detail/?competition_id=5&flag=1
http://iops.ai/dataset_detail/?id=10
http://iops.ai/dataset_detail/?id=10
https://flink.apache.org/
https://kafka.apache.org/
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly

	Abstract
	1 Introduction
	2 Background & Problem Statement
	2.1 Performance Anomaly Patterns in Online Service Systems
	2.2 Metric Pattern Mining
	2.3 Problem Statement

	3 Methodology
	3.1 Overview
	3.2 Offline Anomaly Detection
	3.3 Online Anomaly Detection
	3.4 Time and Space Complexity

	4 Experiments
	4.1 Experiment Setting
	4.2 Experimental Results

	5 Industrial Practice
	5.1 Online Deployment
	5.2 Case Study
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

