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Log parsing serves as an essential prerequisite for various log analysis tasks. Recent advancements in this field
have improved parsing accuracy by leveraging the semantics in logs through fine-tuning large language models
(LLMs) or learning from in-context demonstrations. However, these methods heavily depend on high-quality
labeled examples to achieve optimal performance. In practice, continuously collecting high-quality labeled
data is challenging since logs are huge in volume and under frequent evolution, leading to performance
degradation or heavy maintenance efforts for existing log parsers after deployment. To address this issue,
we propose LUNAR, an unsupervised LLM-based method for efficient and off-the-shelf log parsing. Our
key insight is that while LLMs may struggle with direct log parsing, their performance can be significantly
enhanced through comparative analysis across multiple logs that differ only in their parameter parts. We
refer to such groups of logs as Log Contrastive Units (LCUs). Given the vast volume of logs, obtaining LCUs
is difficult. Therefore, LUNAR introduces a hybrid ranking scheme to effectively search for LCUs by jointly
considering the commonality and variability among logs. Additionally, LUNAR crafts a novel parsing prompt
for LLMs to identify contrastive patterns and extract meaningful log structures from LCUs. Experiments on
large-scale public and industrial log datasets demonstrate that LUNAR significantly outperforms state-of-the-
art log parsers in terms of accuracy and efficiency, providing an effective and practical solution for real-world
deployment.
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1 Introduction

Log messages record events, transactions, or activities generated by software applications and
operating systems at runtime [19, 34, 35]. They provide valuable insights for system performance
monitoring and reliability assurance. Various tools have been developed to conduct automated log
analysis tasks, including anomaly detection [6, 38, 69-71], root cause analysis [2, 36, 50, 60], and
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Fig. 1. An example of log parsing procedure.
failure diagnosis [5, 21, 25, 65]. Log parsing, which transforms semi-structured log messages into
structured formats [30], serves as a critical preliminary step in log analysis. Typically, a raw log
message contains two parts: 1) log templates: constant parts that describe the main content of the
logged event; 2) log parameters: dynamic parts that contain the parameters (determined at runtime)
associated with the event. Figure 1 demonstrates some log messages generated by their logging
statements and parsed into structured data.

A straightforward approach to log parsing involves matching raw log messages with their
corresponding logging statements in the source code [4, 54, 55]. However, in practice, source code is
not always accessible, particularly for commercial software and third-party libraries. Consequently,
various data-driven log parsers have been proposed to directly extract templates and parameters
from raw logs. They can be generally categorized into two types: syntax-based parsers and semantic-
based parsers. Syntax-based parsers [17, 59, 63, 67] resort to statistical or heuristic rules (e.g.,
log length, word frequency) to identify common parts among logs as templates. However, these
approaches often struggle to accurately recognize templates when log messages deviate from the
handcrafted features, resulting in limited parsing accuracy in practice. To address these limitations,
deep learning models have been introduced in this field to leverage more advanced features of
log data, i.e., their semantics. For example, LogPPT [31] fine-tunes a pre-trained language model
(e.g., RoBERTa [40]) based on manually labelled log templates, aiming for better performance. With
the increasing popularity of large language models (LLMs) for log analysis, recent studies [26, 64]
have started employing LLMs for log parsing. These parsers, which are based on LLMs, leverage
the comprehensive pre-trained knowledge these models possess and apply the in-context learning
(ICL) paradigm [10, 14]. By providing labelled examples as demonstrations, they specialize LLMs
for the task of log parsing.

Despite effective, existing semantic-based log parsers largely depend on high-quality labelled
examples to achieve optimal performance [44]. However, collecting high-quality labelled log data
is challenging in real-world scenarios, which hinders their applicability and scalability in practice.
On one hand, production log data are huge in volume, e.g., hundreds of millions of logs per hour
according to recent studies [61]. Manually annotating log messages of this scale from diverse systems
is labor-intensive and error-prone, requiring substantial domain expertise to ensure accuracy and
consistency [27]. On the other hand, the log data from real-world software are continuously
evolving over time [61, 64]. New log messages and log templates can emerge frequently, reflecting
changes in system behavior, updates, and new feature deployments. This dynamic nature requires
constant re-annotation and adaptation of parsers, making it difficult to preserving high accuracy.
Consequently, the performance of existing semantic-based log parsers may degrade significantly
without continuous and significant manual intervention. As demonstrated in our empirical study
(Section 2.1), when the proportion of labelled examples decreases by 70%, the F1 score of template
accuracy (FTA) of the state-of-the-art semantic-based log parsers, LogPPT [31] and LILAC [26],
drops by 33% and 15%, respectively.

To address this label-demanding problem, we propose LUNAR, an LLM-based unsupervised
log parser, which can generalize to any new log dataset without manual annotations or prior
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knowledge of the specific log formats. The core idea behind LUNAR lies in leveraging LLMs’ ability
to perform comparative analysis on multiple log messages that vary in their parameter parts.
While LLMs may struggle with direct log parsing, the comparison can derive valuable insights
by identifying and interpreting patterns across these variations. For instance, by contrasting logs
such as “session opened for user news” and “session opened for user test,” LLMs can
easily infer that the tokens “news” and “test” are likely to represent a username parameter. We
refer to such group of logs as a Log Contrastive Unit (LCU), which are similar enough to facilitate
meaningful comparisons, yet diverse enough to highlight the variable parameters. To find LCUs,
we introduce a hybrid ranking scheme by jointly considering the commonality and variability
among logs. However, given the vast volume of logs, evaluating every possible combination of
logs is impractical. Thus, we introduce a hierarchical sharder to first divide logs into different
buckets based on log length and top-k frequent tokens. The LCU selection and subsequent log
parsing can then be efficiently performed in each bucket in parallel. Using the selected LCU, LUNAR
instructs LLMs with our novel specialized parsing prompt, leveraging LLMs’ advanced textual
understanding to identify templates. Unlike ICL adopted by existing methods that demand labelled
demonstrations [26, 64], the prompt specifies task intention and output constraints in detail, and
provides representative parameter examples to inform LLMs of parameter characteristics. Guided
by the prompt, the LLM can differentiate between the variant and invariant parts among the given
logs, thereby generating more accurate templates.

We evaluate the performance of LUNAR against a range of label-free (unsupervised) parsers and
label-dependent parsers. The experiments are conducted on 14 large-scale log parsing datasets in
Loghub-2.0 [27] from LogPAI [72]. The results show that LUNAR substantially outperforms the
unsupervised baselines, surpassing Brain [67] and LILAC w/o ICL [26] by 43.5% and 19.6% in FTA,
respectively. Compared with label-dependent methods, LUNAR achieves performance on par with
the current state-of-the-art parser, LILAC. Moreover, with parallelization capability, LUNAR attains
a parsing speed comparable to most syntax-based baselines and superior than semantic-based
baselines, facilitating efficient parsing of large-scale log data. Our evaluation shows the potential
of LUNAR for deployment in real-world production systems, where the efficiency, accuracy and
generalizability are critical concerns.

To sum up, the main contributions of this work are as follows:

o To the best of our knowledge, we propose the first LLM-based unsupervised log parser LUNAR,
which instructs LLMs to identify the invariant parts of the given log contrastive units (LCUs).

e To enable efficient LCU sampling, we introduce a hierarchical sharding scheme, which reduces
sample overhead and allows parallel parsing. Moreover, we propose a hybrid method to measure
the LCU by balancing the commonality and variability.

o We evaluate LUNAR on large-scale public datasets. The results show that LUNAR significantly
outperforms unsupervised parsers by 19.6% and achieves comparable performance with state-of-
the-art label-depended method, i.e., LILAC, in terms of accuracy and efficiency.

2 Motivation
2.1 Limitations of Semantic-based Log Parsers

Recently, semantic-based log parsers [31, 42] have gained significant attention, outperforming
traditional syntax-based methods [15, 17, 67] that use specially designed features or heuristics
(e.g. ngram [7], prefix tree [11, 17]) by a considerable margin [27, 31]. The improvement mainly
stems from the use of language models (LMs) to comprehend the semantics within log messages
without the reliance of handcrafted features [31, 32]. LMs are pre-trained on a large-scale corpus
of textual data and can take advantage of the learned language patterns to perform downstream
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tasks [9, 40]. For example, LogPPT [31] fine-tunes a small language model (e.g., RoBERTa [40] with
110M parameters) to predict templates and parameters in log messages. Recent works [26, 64]
also utilize large language models (LLMs) (e.g., GPT-3.5 with 175B parameters) for log parsing.
With the increasing size of training corpus and model parameters, LLMs have learned more pre-
trained knowledge related to textual logs. This equips them with the ability to make more accurate
differentiations between static templates and varying parameters within log messages.

Despite the promising results reported, semantic-based parsers require labelled examples (i.e., log
messages and their corresponding ground-truth log templates) to achieve their full effectiveness on
log parsing tasks. For instance, the state-of-the-art log parser, LILAC [26], employs labelled samples
to perform in-context learning (ICL) to guide language models in producing templates, which is a
crucial component to ensure its effectiveness. However, collecting sufficient labelled data is difficult
in practice. The reasons behind this are two-fold. Firstly, manually collecting labelled examples from
log data is labor-intensive and error-prone, which requires extensive domain expertise. Secondly,
software frequently undergoes changes [61, 64, 70], resulting in new semantics and patterns in
the log data (i.e., concept drift [13]). Consequently, the performance of these log parsers tends to
degrade over time.

To quantitatively understand the impact of labelled examples on parsing performance, we re-
evaluated two representative semantic-based log parsers, i.e., LogPPT [31] and LILAC [26], using
varying label proportions. Specifically, our study utilized large-scale log parsing datasets from
Loghub-2.0 [27], which contain 50.4 million log messages from 14 real-world software systems.
For each dataset, we randomly sampled different proportions of labelled log templates as the
model-accessible oracles, which are then applied for fine-tuning or ICL. The proportion ranges
among 75%, 50%, 25%, 10%, and 5%, simulating real-world scenarios where oracle labelled templates
are scarce due to insufficient manual labeling or system evolution. We measured their effectiveness
using the widely adopted F1 score of template accuracy (FTA) [30]. To reduce the bias introduced
by randomness, we performed the experiments five times for each setting, following previous
studies [27, 31, 64, 72]. We reported the average FTA scores, as shown in Figure 2.

We observe that the performance of both LogPPT and LILAC significantly declines as the
label proportion decreases. For example, when the label proportion is 75%, LogPPT achieves a
performance of over 50%. However, when the label proportion drops to 5%, its performance falls
to about 17%, indicating a substantial decrease of 33%. Similarly, with a label proportion of 75%,
LILAC attains an average FTA score of approximately 81%. When the proportion decreases to 25%,
the score drops to about 75%. At a label proportion of just 5%, the score further declines to around
66%, representing a reduction of over 15% compared to the highest score. These results suggest that
the proportion of labelled examples can significantly impact the performance of semantic-based
log parsers, posing challenges to apply them into real-world software systems. Therefore, we aim
to develop a label-free semantic-based log parser, which can avoid label insufficiency problems and
generalize to unseen software without labelled templates.

LogPPT LILAC Log1: connection from 127.0.0.11 () at Wed Jun 29 03:22:23 2005
355 85 Log2: connection from 127.0.0.11 () at Wed Jun 29 03:25:23 2005
< Log3: session opened for user news
< 45 80 Log4: session opened for user test
;_[T_ Log5: ALERT exited abnormally with [1]
© 33 75 Log6: connection from 69.15.163.251 (mail2.systemsevolution.com) at Thu Jun 30 04:23:33 2005
%025 70 Log7: connection from 212.5.120.141 (host-141.STSK.macomnet.net) at Thu Jun 30 09:09:44 2005
5 .
> Logl Loga LOEG Logl
s 75 50 25 10 ; % m W 3 ” 1082/ o
0 . Lcu-1 Lcu-2 Leu-3% Lcu-4
Label Proportion (%) Label Proportion (%) v v
Fig. 2. Empirical study on the influences of la-
bel proportion on semantic-based log parsers. Fig. 3. Examples of log contrastive units (LCUs).
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2.2 Log Contrastive Unit for LLM-based Parsing

Here, we present our motivation of developing a label-free, LLM-based log parsing approach.

Existing solutions rely on labelled data to guide language models in inferring the parameters
from log messages. In contrast, our core insight is that the LLM itself can derive sufficient hints by
comparing multiple logs. For example, by comparing the logs: “session opened for user news” and
“session opened for user test”, LLMs can easily infer that “news” and “test” are likely username
parameters, because these segments vary while the rest of the log message remains consistent. We
aim to leverage such comparisons to guide LLM without the need for labelled data.

We define such grouped log messages as a log contrastive unit (LCU), which consists of multiple log
messages potentially sharing the same template, allowing LLMs to parse them through comparisons.
Constructing an effective LCU that guides the LLM to produce accurate parsing results is non-trivial.
Specifically, log messages within the same LCU need to exhibit both commonality and variability:
e Commonality: These log messages should share some common tokens. If they differ significantly,

they are likely generated by different logging statements and are not different templates. For

example, logs in LCU-3 differ greatly, thus failing to provide proper hints to LLMs.

o Variability: These log messages should differ in some of their tokens. If they are all identical, the
LLM might mistakenly interpret all tokens as constants. For instance, the IP address in logs of
LCU-4 is identical, which can mislead the LLM to regard the parameter parts as constants.

LCU-1 and LCU-2 are examples of well-structured LCUs, as log messages within them exhibit

both commonality and variability, guiding the LLM to infer the templates and parameters through

comparison. However, we observe the following challenges in practice:

e Challenge 1: LCU Volume Explosion: The sheer volume of log data generated by modern
software systems can lead to an exponential increase in the number of potential LCUs. The
explosion in combinations complicates the efficient scaling of the LCU-based approach.

e Challenge 2: Balancing Commonality and Variability: Log messages often exhibit significant
diversity, with templates comprising vastly different tokens. The diversity makes it difficult to
identify effective LCUs that balance commonality and variability. Finding suitable combinations
of log messages that share enough common tokens while still exhibiting variability is a complex
task, exacerbated by the dynamic nature of log data and the need for continuous adaptation.

3 Methodology
3.1 Overview

Figure 4 illustrates the overall framework of LUNAR, which consists of three main components:
hierarchical sharder, generative LCU ranker, and label-free LLM parser. To address the first challenge,
we propose the hierarchical sharder, which divides raw log messages into different buckets based
on log length and top-k ranked tokens. By separating logs with low similarity into different buckets,
this component reduces the sampling overhead and enables parallelization for efficient parsing
(§3.2). To address the second challenge, we propose the generative LCU ranker, which operates
within each bucket to continuously sample LCUs for the LLM to parse. This module computes a
hybrid LCU score that jointly considers both the commonality and variability of the LCUs, guiding
the sampling process to ensure effective LCUs (§3.3). Then, the label-free LLM parser constructs
an organized prompt for the mined LCUs to query the LLM and obtain the templates from the
LLM’s response. We introduce a novel format to organize the parsing prompt, which specifies the
task intention and output constraints, and includes several representative parameter examples to
inform the LLM of the parameter characteristics (§3.4). Finally, the template is passed to a template
database, which can validate the template and merge similar ones to ensure accurate and efficient
parsing(§3.5). The combination of all components ensures that the LLM can effectively parse the
logs without the need for labelled data, addressing both scalability and diversity challenges.
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Fig. 4. The overall workflow of LUNAR.

Template Database

3.2 Hierarchical Log Sharder

Directly sampling LCUs from the whole log messages is overwhelming due to the large volume of
log data, which often contain million of log messages. Hence, LUNAR first groups the log messages
into multiple log buckets, where each bucket contain logs that share some similarity. By doing so,
extremely different logs, which have less potentials to belong to the same template [17], are placed
to different buckets. Specifically, we propose a hierarchical algorithm to shard log: 1) firstly divide
the log messages by log length, and 2) progressively divide logs by top-k frequent tokens. Figure. 5
demonstrates the workflow of hierarchical log sharder.

3.2.1 Length-based Sharding. LUNAR first
shards the log messages by the log length. Logs
with the same number of tokens are grouped
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3.2.2 Top-k Token Agglomerative Clustering.
However, simply sharding by log length is too
coarse-grained since logs belonging to different templates could have the same length [26]. Thus
LUNAR continuously shards each bucket into more purified ones where less templates are included
in one bucket. Intuitively, the static parts of a log generally have higher occurrences than its
parameter part, therefore logs that share the most frequent tokens have more potential to belong to
the same template [26, 27, 39]. To achieve this, we introduce a hierarchical agglomerative clustering
algorithm based on top-k frequent tokens, which builds the sub-buckets in a bottom-up way.

Specifically, for each bucket obtained from the first step, we first group logs into singleton clusters
based on the same top-k tokens in each log. The top-k tokens of a log is an ordered list extracted
based on the token frequency and position. The frequency is counted among logs in the bucket.
The more frequent tokens takes a more preceding place in the list. However, some log messages
can have multiple tokens with the same frequency, which leads to confusion in ranking; hence we
additionally rank tokens with the same frequency by their positions in the logs, with the preceding
token being ranked before the following token.

Then, we iteratively merge the singleton clusters to obtain final log buckets until a stopping
criterion is met. In each iteration, if a cluster contains more than N logs, it will be directly nominated

Fig. 5. Hierarchical log sharding in LUNAR.
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as a standalone bucket and no further merge operations will be conducted on it. For the remaining
clusters, which contain less than N logs, we merge those with the same top-(k — 1) tokens to form
a parent cluster. The iteration stops if all clusters exceed N logs, or no any two clusters satisfy the
merge condition. Finally, we obtain a collection of buckets containing a smaller number of logs
with higher relevance.

It is worth noting that the collected log buckets have a two-level hierarchy, where each hyper-
bucket obtained by length-based sharding is disjointly separated to multiple final buckets. Therefore,
buckets under the same level are mutually exclusive with each other, i.e., every log belongs to one
bucket on either sharding level. The advantages of this design are two-fold. Firstly, once a template
is obtained, it can be leveraged to match the logs in the bucket while not required for other buckets.
Secondly, this characteristic enables parallel parsing, where the buckets can be independently
allocated on multiple executors. More details will be described in Section 3.6

3.3 Two-stage LCU Selector

After log sharding, LUNAR iteratively select a group of similar logs for the LLM to make
comparisons and extract templates. A suitable group of logs should be similar in tokens to each
other, as logs generated by the same logging statement share several identical tokens. On this
basis, the logs are expected to have as much variance as possible, enabling LLMs to make cross-log
comparisons to infer parameters. For example, in Figure 6, group @ and @ are preferred than group
® as their logs are more likely to belong to the same template. Moreover, group @ is better than @
due to its higher variance reflected in the diverse parameter value of process index.

We term such a group of logs as a log contrastive unit (LCU). Logs in each LCU have both
commonality (e.g., with common words or belonging to the same template) as well as variability
(e.g., with different tokens), so that it can be leveraged to infer the parameters. To collect LCUs, we
leverage a two-step sampling approach: stratified LCU generation and hybrid LCU nomination.

3.3.1 Stratified LCU Generation. Given a bucket of logs, LUNAR first generate multiple candidate
LCUs that share some similarity. A straightforward approach is to enumerate all possible log
combinations. However, this method is computationally expensive due to the sheer volume of logs
and the complexity of enumeration. To reduce computation overhead, we apply stratified sampling
to collect a limited-sized log pool by sampling from different similarity levels before combination.

Given a log bucket, LUNAR preprocess the logs with simple regular expressions following
previous unsupervised parser Drain [17]. It then randomly selects a log message in the bucket
as the anchor log. Next, LUNAR computes the pair-wise similarities of the anchor log to the
remaining logs. We use Jaccard similarity, which is a widely adopted metric to measure pair-wise

log similarity [17, 26]. Specifically, we first split the log [ into tokens T (I) with white-space delimiter
T(L)NT (L)

T(li)UT(lz)’
similarity below a threshold s or equals to 1.0. The poor similarity indicates the less possibility

to belong to the same template, while a similarity of 1.0 indicates duplication. After that, we
create a pool of logs by stratified sampling from each similarity level to ensure balanced sampling.
Specifically, we set the sample size of each level equal to the LCU size m to involve more diverse
logs. Lastly, from the log pool, LUNAR generates multiple LCUs by combinatorial enumeration.
Each LCU consists of an anchor log, as well as m — 1 logs chosen from the pool. Since we sample
a small size of LCU (e.g., m = 3 or m = 4) from a limited size of log pool, the computational cost
of combinatorial enumeration is within an acceptable range (More details about efficiency can be
found in Section 5.4). If the log pool contain less than m — 1 logs, we directly return the anchor
with the pool as the candidate LCU. Finally, a candidate set of LCUs are generated and proceeded
to hybrid ranking in the next step.

and then compute the Jaccard similarity JS(I3, ;) = Then, we remove the logs with a
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Fig. 6. An example of expected LCU in LCU nomination.

3.3.2 Hybrid LCU Ranking. After obtaining a small number candidate LCUs, LUNAR conducts
hybrid ranking to select the most suitable LCU. The selected logs are required to exhibit variability,
while maintain some commonality as we discussed in Section 2.2. By doing so, LLMs can be less
likely to incorrectly recognize the frequent tokens as parameters, while also benefit from the
contrastive information in the LCU. Specifically, we propose to compute the variability score and
the commonality score to measure an LCU.

Firstly, the variability score of an LCU is computed as average of pair-wise distances to measure
the overall variability of the logs. Suppose an LCU consists of L logs LCU = {Iy, l,, ...I. }, we first
compute the distance between any two logs in the LCU based on Jaccard similarity:

dist(l,-, l]) =1 —]S(li,lj). (1)
Then we average the distances of every two logs in the LCU to obtain the variability score:
Variabilit 2 SRS
ariability _ . .
et =I5 ; ,;1 dist(1;, 1)), @)

where the higher the variability score, the more diverse the LCU, indicating more contrastive
information is included.

Simply ranking by variability could result in LCUs containing totally different logs (e.g., LCU ® in
Figure 6). As the compensation, the commonality score of an LCU is introduced, which is computed
as the average of absolute similarity difference to balance the variance of logs. Specifically, we P
log pairs can be obtained from an LCU, then:

P P
sy ommonality _ ﬁ Z Z (1= 1IS(pi) = JS(p)I). )
i=1 j=i+1
where JS(p;) is the Jaccard similarity of log pair p;. The higher the commonality score, the more
likely that logs belong to the same template, as the similarity difference between pair to pair is
relatively low. Logs that share the same template but differ only in their parameters will exhibit
exactly such a pattern. For example, in the LCU® of Figure 6, the similarity between any two logs is
the same as any other two logs within the LCU, which implies the highest commonality score of 1.
To jointly consider the variability and commonality scores, we combine them with linear inter-
polation with a weight of A, to obtain the hybrid LCU score. The LCU with maximum interpolation
score selected as the final LCU, which is computed as follows:

SLCU =A- SI“/glr]iabilify + (1 _ /1) . nggmonality. (4)

To present the LCU score in a straightforward way, we provide an example with a sample size
of 3 in Figure 6. In this example, by selecting with variability score only, LCU @ will be sampled.
However, LCU ® is sub-optimal as the logs belong to three different templates. LLMs might mis-
classify the parameter “1603” as this group fails to provide useful contrasts towards it. With the
commonality score only, LCU @ will be sampled. However, this is also sub-optimal due to the
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# Basic Requirements:

- 1 will provide multiple log messages, each delimited by backticks. Prompt

- You must identify and extract all dynamic variables in each log with {placeholder} and output static log templates.
- Identify the semantics of variables and compare the differences between logs to identify potential dynamic
variables if they belong to the same template.

- Preserve any dynamic variables already marked by "<*> or *{placeholder}".

- Pay attention to the slightly different strings among logs, which have high possibility to be dynamic variable.

- Do not convert non-variables, especially when only one log is presented in the group. LLM Response
# Advices on Parameters and Non-parameters:

- Common variables: numbers, IP addresses, URLs, file paths, directories, hex values, usernames, etc.

- Full directory with filename, complex url with server address or domain should be recognize as one variable.
- Error /types, java exceptions, or interrupted are NOT dynamic variables as they contain
important information. Specific actions or status words are NOT dynamic variables.

# Parameter Examples:

- */var/www/html/xxx" -> ‘{directory} Template Acquisition
-"192.168.0.1:8008" -> ‘{complex_ip}'

- 'blk_-123456783" -> ‘{blk_id}"

# Output Constraints:

- For each log line, output corresponding log template starting with LogTemplate(idx], no other line break. Template
- Each input log's template is delimited by backticks.

Log[1]: ‘Received block blk_-160899 of size 91178 from 10.250.10.6"
Log([2]: ‘Received block blk_-434451 of size 6710 from 10.250.15.8"
Log[3]: "Received block blk_783186 of size 6864 from 10.251.26.198"

Prompting LLM

LogTemplate[1]: "Received block {blk_id} of size {size} from {ip}
LogTemplate[2]: "Received block {blk_id} of size {size} from {ip}
LogTemplate[3]: "Received block {blk_id} of size {size} from {ip}’

Received block <*> of size <*> from <*>

Fig. 7. Demonstration-free parsing prompt in LUNAR.

identical parameter “1603”. This LCU could mislead LLMs to incorrectly recognize parameters due
the identical tokens. In contrast, by combining the variability score and commonality score, we
can obtain an optimal LCU, where each parameter has at least two values present. Using this LCU
can be maximumly inform LLM to consider the changing tokens, thereby leading to an improved
parsing accuracy.

3.4 Label-free LLM Parser

Upon obtaining an LCU, LUNAR applies an LLM-based parser to extract the template without any
labelled examples. The parser utilizes the advanced text comprehension ability of LLMs, which have
demonstrated remarkable performance in various unsupervised information extraction tasks (e.g.,,
named entity recognition [62] and text classification [43]) using a task-specific prompt instruction.
Hence, we believe that LLMs have the potential to identify templates from LCUs in an unsupervised
manner with an optimized prompt instruction. Specifically, our LLM parser first creates a well-
designed prompt for each LCU to instruct the LLM (§3.4.1) and then extract the template from the
LLM response (§3.4.2).

3.4.1 Prompt Design. As LLMs are not specifically tuned for log parsing, existing LLM-based log
parsers leverage exemplars of log and its labelled template to instruct the task [26, 64]. These
demonstrations could specify task intents, output format, and parameter information of the domain,
which are useful to enhance log parsing [44, 47]. However, in this work, we focus on developing
an unsupervised parser where no labelled templates are provided. Therefore, we need to design a
more concrete prompt covering the aforementioned demanding information to facilitate accurate
parsing. Specifically, our prompt contains four parts: task instructions, parameter examples, output
constraints, and input LCUs. Figure 7 shows a prompt example.

Task Instruction. A clear and useful prompt should provide comprehensive instructions for
LLMs to understand the task [16]. In LUNAR, we create the instruction of log parsing with two
parts: basic requirements and general advice on parameters. For basic requirements, the task
input/output and the mapping mechanism from input to output are firstly specified. The instruction
also guides the LLM to consider the similarity between the grouped input logs. For general advice on
parameters, high-level descriptions of parameter types are provided. We also highlight error-prone
non-parameters, such as error messages as they contain important information.

Parameter Examples. Inspired by the entity examples used for unsupervised NER [24], we involve
parameter examples (PEs) to the prompt. These examples are used to provide domain knowledge
of parameters and instruct extraction formats of the task, which consist of a parameter type and a
parameter value. For instance, “/var/www/html/xxx” is the value of a parameter “directory”. We
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connect the parameter value and type by an arrow in the prompt, aiming to indicate the task intent
of converting the value to a placeholder with a bracket.

In our paper, we introduce six types of most frequent PEs and fix them among all evaluation
datasets to demonstrate PEs’ effectiveness and ensure fair comparison in an unsupervised setting.
To obtain these PEs, we first manually examine the parameter types and values identified in previous
study [37], and collect three most frequent non-digit parameter types: location indicator, object
ID, and time. We then manually examine the corresponding parameter values and summarize six
representative and concrete types, including directory, file, IP for location, timestamp for time, and
block id, service api for object ID. Finally, we randomly sample a value for each type.

Output Constraints. In output constraints, we explain the desired output formats. The prompt
instructs LLMs to produce a template for every log message. Each generated template should be
appended with a prefix “LogTemplate[idx]” and delimited with backticks to facilitate template
aggregation and extraction.

Queried LCUs. Finally, the LCU of multiple logs are incorporated to the prompt. We arrange the
logs in sequential order and apply a prefix schema (i.e., “Log[]:”) and index indicator to indicate the
order. In this way, the LLM can make straightforward comparisons and produce corresponding
template for each log.

Guided by the task instruction, parameter examples, and output constraints, the LLM could more
accurately generate the templates of the queried logs in the LCU.

3.4.2 Template Acquisition. After constructing the prompt, we use the LLM to identify the templates
in the LCU. Specifically, we first leverage prompts to query an LLM to get a response. After that,
we perform post-processing to extract valid templates from the response. Specifically, we extract
all backticked strings with a “LogTemplate” prefix, thanks to clear output constraints in the prompt.
Then we aggregate the extracted templates into one template by selecting the most frequent
template. Finally, we replace the bracketed parameters by the placeholder < * >.

3.5 Template Revision and Bucket Updating

After extracting a template from LLM, LUNAR compares it with existing templates and examines
the logs that match the template. As LCU selector weights static words and parameters equally
in commonality scores, it can produce suboptimal LCUs with several identical parameters across
logs. The repetition can mislead the LLM parser to incorrectly classify parameters as static parts in
templates. To mitigate the issue, we follow LILAC [26] and compare the newly extracted template
with existing ones, revising it to improve accuracy. Once obtaining the revised template, LUNAR
examines the matchable logs to update the bucket. To improve efficiency and minimize redundancy,
LUNAR uses a template database to store both templates and indexes of matched logs.

3.5.1 Template Revision. When an LLM-derived template is obtained, LUNAR first selects a similar
template and subsequently generate a revised version. The revision process is skipped if no similar
template can be found. Specifically, the selection is based on the token difference, where a template
with equal token count or with only 1 or 2 different tokens is chosen as the candidate. The strict
criterion maximizes the probability that the templates belong to a single hyper template.

Subsequently, LUNAR performs a pairwise, token-level merge to generate a revised template.
Specifically, for tokens at the same position, identical ones are retained, while differing ones
are modified. We employ a bi-directional editing strategy to merge tokens, retaining matching
characters across tokens on both sides, and replacing the middle positions with a wildcard symbol
“<%>”. For example, the token “mesos-slave-<x>" and “mesos-master-<x>" are edited to “mesos-<#>".
It is worth-noting that to avoid over-merging meaningful content, LUNAR only edits tokens that
resemble parameters, specifically those with non-alphabetic symbols.
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3.5.2  Bucket Updating. After template revision, LUNAR matches logs to the template using regular
expressions and writes the updating history to a template database. The template is assigned as the
final prediction to these successfully matched logs, which are then removed from the buckets. To
reduce redundant matching, the template and corresponding log indexes are stored in template
database. This allows LUNAR to directly assign the revised template to logs that match a pre-merged
template without repeating regular expression matching. Remaining logs in the buckets proceeded
to next parsing iteration. Parsing terminates once all buckets are empty.

It is worth-noting that hierarchical sharding produces buckets at two levels, i.e., sharded by
length and further clustered by top-k tokens. A straightforward approach for bucket updating is to
only examine and update the final bucket. However, logs of the same template can be distributed in
different buckets of equal length, potentially causing redundant iterations for one template, leading
to prolonged parsing time and increased LLM querying expenses. To balance the parsing overhead,
LUNAR conducts template matching and updates buckets at the first sharding level, meaning
that buckets with identical log lengths are all examined once a template is obtained. Additionally,
template revision is also consequently conducted at the first sharding level, where templates of
equal-length logs are stored in one template database.

3.6 Parallelization

In previous sections, we have discussed the building components of LUNAR. In practice, scalability
is a crucial issue when parsing vast amounts of log messages [61]. Therefore, we introduce the
parallelization mechanism of LUNAR to improve the parsing speed.

As mentioned in §3.2, hierarchical sharding produces mutually exclusive log buckets at two
levels. Consequently, logs in different buckets can be processed in a completely parallel fashion.
However, since template revision and bucket updating is performed among all the buckets of the
same length at the first level. Simply allocating buckets at the second level to produce template
and update buckets can lead to template conflict and revision conflict, i.e., different templates being
assigned to the same log and one template being simultaneously modified with different LLM templates.
To address the problem, the allocation is conducted at the first level. Specifically, we aim to allocate
n executors for all first-level log buckets. Within each first-level log bucket, LUNAR iteratively
selects the largest second-level bucket, selects an LCU, queries the LLM to obtain the template,
revise it, and updates buckets under this level.

3.7 Online Parsing

LUNAR can be seamlessly extended to an online setting, allowing it to consistently parse
streaming logs without the need for manually labeled templates. After obtaining a collection of
templates with LUNAR during offline phase, we can leverage the extracted templates for online
parsing. Specifically, when new logs arrive, they are firstly matched against existing templates. The
unmatched logs are then passed to LUNAR for LLM-based parsing. To construct LCUs for LUNAR,
we introduce a log pool to collect the unparsed logs. When the pool exceeds a number of logs,
LUNAR is invoked to iteratively parse the logs by performing hierarchical sharding, LCU selection,
label-free LLM parsing, template revision, and bucket updating. After that, the parsed templates
are added to the template database for future matching.

4 Experiment Setup

We conduct experiments to evaluate LUNAR by answering following research questions (RQs):
e RQ1: How effective is LUNAR in log parsing?
e RQ2: How do different components affect LUNAR?
o RQ3: How effective is LUNAR integrated with different LLM and prompts?
o RQ4: How eflicient and cost-effective is LUNAR in parsing large-scale log data?
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4.1 Datasets

To comprehensively evaluate LUNAR, we select Table 1. Statistics of Log Parsing Datasets

17 log parsing benchmark datasets with diverse Dataset #Logs # Templates
log sources and template availability, including 14 Proxifier 21320 "
datasets from Loghub-2.0 [20, 27], CTS [63], Hi- Apache 51,977 29
Bench [63], and LoFI [21]. Loghub-2.0 [20, 27] is OpenSSH 638,946 38
. HDFS 11,167,740 46

a collection of 14 large-scale benchmark datasets Openstack 207,632 48
for log parsing. The logs are publicly released by HPC 429,987 74
: _ Open-source Zookeeper 74,273 89

the LogPAI team [72] and annotated Wlth grognd Logs [27.72]  HealthApp 212,394 156
truth templates in Loghub-2.0, covering a variety Hadoop 179,993 236
of systems such as distributed systems, supercom- Spark 16,075,117 236
uter systems, and server-side applications. Com- BGL 631,201 320
p Y ’ pp : Linux 23,921 338
pared with Loghub [20], Loghub-2.0 is equipped Mac 100,314 626
with 3X templates and 1, 800X log messages on aver- Thunderbird 16,601,745 1241
age, which can support more comprehensive evalua- Industrial ~ C LS [63] 264 78
i £ d effici A t Loghub Logs [21, 63] HiBench [63] 1,879 93
ion of accuracy and efficiency. Apart from Loghub- gs [21.63] | b o] 2,080 453
2.0, we also introduce three industry log datasets Average 2.965.931.9 7301

released in recent two years. CTS [63] logs are col-
lected from a cloud testing system. HiBench [63] logs are collected from a commercial cloud
benchmark system. Both are annotated with ground-truth templates and are publicly available. We
only keep the single-line log messages for evaluation. LoFI [21] logs are collected from a cloud
service system with no available ground-truth templates. We manually annotated the templates
following the previous guidelines [27, 30]. Table 1 shows the statistics of these datasets.

4.2 Baselines

We compare LUNAR with seven open-sourced state-of-the-art log parsers, including four unsu-
pervised syntax-based parsers and three label-required semantic-based parsers. For unsupervised
label-free parsers, we adopt four syntax-based methods and one LLM-based method. The syntax-
based methods include AEL [28], Drain [17], and Brain [67], selected for their superior performance
compared to other syntax-based methods [27, 30, 72]. Additionally, LogMine [15] is included due
to its method that initially clusters and then merges, akin to LUNAR. As there are currently no
LLM-based log parsers proposed for label-free parsing, we adopt a label-free variant of LILAC [26]
(LILAC w/o0 ICL) by removing the in-context learning (ICL) module. In terms of label-required log
parsers, we select three state-of-the-art semantic-based log parsers: UniParser [42], LogPPT [31],
and LILAC [26]. UniParser trains a long short-term memory (LSTM) model on labelled log data
for log parsing. LogPPT uses labelled log data to perform prompt-based fine-tuning based on
RoBERTa [40]. LILAC samples similar logs from a small set of labelled logs (e.g., 32 logs) for each
log, utilizing an ICL paradigm for LLMs to parse logs.

4.3 Evaluation Metrics
Following previous works [27, 30, 72], we evaluate LUNAR with the following four metrics.

o Grouping Accuracy (GA) [72] is a log-level metric that measures the the amount of log messages
of a same template are grouped together by the parser. It is computed as the ratio of correctly
grouped log messages over all log messages, where a log message is regarded as correctly grouped
if and only if its predicted template have the same group of log messages as the oracle.

e Parsing Accuracy (PA) [7] is alog-level metric that measures the correctness of extracted templates
and variables. It is defined as the ratio of correctly parsed log messages over all log messages,
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where a log message is considered to be correctly parsed if and only if all its static text and
dynamic variables are identical with the oracle.

o F1 score of Grouping Accuracy (FGA) [27] is a template-level metric that measures the ratio
of correctly grouped templates. It is computed as the harmonic mean of precision and recall of
grouping accuracy, where the template is considered as correct if log messages of the predicted
template have the same group of log messages as the oracle.

o F1 score of Template Accuracy (FTA) [30] is a template-level accuracy computed as the harmonic
mean of precision and recall of Template Accuracy. A template is regarded as correct if and only
if it satisfies two requirements: log messages of the predicted template have the same group of
log messages as the oracle, and all tokens of the template is the same as the oracle template.

4.4 Environment and Implementation

We conduct all the experiments on a Ubuntu 20.04.4 LTS server with 256RAM and an NVIDIA
A100 40G GPU. The LLM used in LUNAR is GPT-3.5 due to its popularity in recent log analysis
studies [26, 44, 64]. We use the latest available LLM gpt-3.5-turbo-0125 and invoke the official API
provided by OpenAl [1]. To minimize the randomness introduced by token sampling, we set the
temperature to 0 and report the average performance of three runs. By default, we set the a top-k
token number to 3 and minimum cluster size to 100 in our hierarchical log sharder. For the LCU
selector, we use an LCU sample size of 3, a interpolation factor A of 0.6, and a minimum similarity of
0.5, respectively. On average, 0.9 regular expressions per dataset are used at the beginning of LCU
selection. For parallelization, we distribute the jobs to 8 executors. We also conduct experiments
of LUNAR with different LCU sample sizes and interpolation factors. As for baseline methods,
we directly use the accuracy reported in previous work [27] and rerun them with their default
parameters on the same environment to fairly compare the efficiency.

5 Evaluation Results
5.1 RQ1: How effective is LUNAR in log parsing?

Setup: In the first research question (RQ), we evaluate the accuracy of LUNAR by comparing
it with state-of-the-art log parsers, as accuracy is the most critical factor for log parsers. For
comprehensiveness, we compare LUNAR with both unsupervised parsers, which do not require
human-labelled log templates, and label-required semantic-based log parsers, which rely on labelled
log templates to support training, fine-tuning, or in-context learning. Moreover, we evaluate LUNAR
using datasets with both open-source and industry logs to assess its generalizability. Table. 2 presents
the overall results on four metrics for LUNAR compared to baseline methods. The best results for
each metric on each dataset are highlighted in bold, while the second-best results are underlined.
If a specific parser could not complete the parsing process within a reasonable timeframe (i.e., 12
hours), as per previous work [26, 27, 30, 72], we denote the score as “-”
Results: Overall, we find that LUNAR achieves the best average grouping accuracy (GA), parsing
accuracy (PA), and F1 score of template accuracy (FTA), as well as the second-best F1 score of
grouping accuracy (FGA). Additionally, LUNAR demonstrates high accuracy across all 17 datasets,
showecasing its robustness in parsing log data from diverse systems. For example, LUNAR achieves
the highest FTA on 15 out of 17 datasets and the second-highest FTA on the remaining 2 datasets.
Among unsupervised log parsers, it is evident that LUNAR significantly outperforms the other
four baselines across all four evaluation metrics. Among the syntax-based parsers (i.e., AEL, Drain,
Brain, and LogMine), Brain achieves the highest scores in template-level metrics, with an average
FGA of 71.9% and an average FTA of 36.8%. However, LUNAR exhibits a substantially higher
average FGA of 91.3% and FTA of 78.5%, surpassing Brain by 19.4% and 41.7%, respectively. This is
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Table 2. Accuracy of LUNAR compared to state-of-the-art baselines on public datasets. (%)

Method || Metric [ Prosifir Apache OpenSSH HDES OpensStack HPC Zookeeper HealthApp Hadoop Spark BGL Limx Mac Thunderbird | CTS HiBench LoFl | Ave.
Unsupervised Log Parsers

GA 97.4 100.0 70.5 99.9 743 74.8 99.6 72.5 823 - 915 91.6 79.7 78.6 78.8 92.1 845 | 855

AEL PA 67.7 72.7 36.4 62.1 2.9 74.1 84.2 311 535 - 40.6 8.2 24.5 16.3 62.5 56.7 304 | 45.2
FGA 66.7 100.0 68.9 76.4 68.2 20.1 78.8 0.8 117 - 58.7 80.6 793 11.6 79.2 87.6 84.4 | 60.8

FTA 41.7 517 33.3 56.2 16.5 13.6 46.5 0.3 5.8 — 16.5 21.7 20.5 3.5 59.7 48.6 25.0 | 28.8

GA 69.2 100.0 70.7 99.9 75.2 79.3 99.4 86.2 92.1 888 919 686 76.1 83.1 79.9 61.6 79.0 | 82.4

Drain PA 68.8 72.7 58.6 62.1 2.9 72.1 84.3 31.2 54.1 39.4 407 111 357 21.6 66.7 26.8 29.5 | 458
FGA 20.6 100.0 87.2 93.5 0.7 30.9 90.4 1.0 78.5 86.1 624 77.8 229 23.7 69.3 46.0 78.5 | 57.0

FTA 17.6 51.7 48.7 60.9 0.2 15.2 61.4 0.4 38.4 412 193 259 6.9 7.1 57.0 23.6 22,6 | 29.3

GA 52.1 99.7 66.3 96.0 100.0 80.0 99.3 97.9 56.3 972 940 790 834 79.2 80.3 79.1 643 | 82.6

Brain PA 703 28.7 48.1 92.9 14.1 66.3 82.2 17.5 14.3 393 402 1.0 32.5 26.1 70.1 62.2 253 | 43.0
FGA 73.7 933 75.9 75.9 100.0 44.7 79.8 87.2 52.8 208 756 751 754 74.8 80.0 68.8 69.3 | 71.9

FTA 73.7 46.7 34.5 62.1 29.2 213 60.1 339 20.0 1.0 197 275 294 274 69.3 47.7 21.7 | 36.8

GA 50.4 100.0 - - - - 69.7 - 82.7 - 644 73.6 85.1 - 87.5 79.7 81.0 | 774

LogMine PA 0.0 26.2 - - - - 45.6 - 52.9 - 9.7 35 283 - 69.7 433 29.6 | 30.9
FGA 0.8 100.0 - - - - 1.6 - 12.4 - 247 751 451 - 83.5 85.1 81.6 | 51.0

FTA 0.0 414 - - - - 0.8 - 6.3 - 3.7 195 122 - 65.8 43.6 240 | 217

GA 52.1 99.7 74.6 100.0 524 87.0 99.8 100.0 85.8 90.0 86.2 779 788 66.7 86.4 69.4 59.8 | 80.4

LILAC PA 67.1 97.0 434 94.7 374 933 58.1 56.2 71.0 715 782 786 50.1 43.2 76.9 23.1 339 | 63.2
w/o ICL FGA 424 91.8 78.3 69.3 90.0 88.9 95.0 97.1 90.0 828 832 790 773 35.4 80.2 43.2 65.6 | 75.9
FTA 48.5 72.1 49.3 56.0 68.0 75.0 74.0 7.7 66.7 60.0 663 574 46.7 219 68.9 22.2 30.0 | 56.2

Label-required Log Parsers

GA 50.9 94.8 27.5 100.0 100.0 71.7 98.8 46.1 69.1 854 918 285 737 57.9 61.7 85.8 719 | 71.9

UniParser PA 63.4 94.2 28.9 948 516 94.1 98.8 81.7 88.9 795 949 164 68.8 65.4 56.1 745 573 | 711
FGA 28.6 68.7 0.9 96.8 96.9 66.0 66.1 74.5 62.8 2.0 624 451  69.9 68.2 545 73.7 77.8 | 59.7

FTA 45.7 26.9 0.5 58.1 28.9 35.1 51.0 46.2 47.6 1.2 21.9 232 283 29.0 46.5 54.4 35.7 | 34.1

GA 98.9 78.6 27.7 72.1 53.4 78.2 96.7 99.8 48.3 47.6 245 205 544 56.4 95.1 29.6 8.7 | 58.3

LogPPT PA 100.0 94.8 65.4 94.3 40.6 99.7 84.5 99.7 66.6 952 938 168 39.0 40.1 86.0 9.0 6.5 | 66.6
FGA 87.0 60.5 8.1 39.1 87.4 78.0 91.8 94.7 52.6 374 253 712 493 21.6 92.5 209 19.9 | 55.1

FTA 95.7 36.8 10.5 31.2 73.8 76.8 80.9 82.2 43.4 299 261 428 274 11.7 85.0 9.0 54 | 452

GA 100.0 100.0 748 100.0 100.0 86.9 100.0 100.0 92,6 99.9 911 825 814 79.4 85.6 95.8 78.2 | 91.1

LILAC PA 100.0 97.2 99.9 94.7 95.2 93.7 68.5 60.4 73.2 689 904 814 564 53.3 77.7 78.9 48.6 | 78.7
FGA 100.0 100.0 87.7 96.8 100.0 86.1 96.7 97.1 94.1 89.7 885 86.1 87.1 859 86.9 84.7 852 | 91.3

FTA | 1000 862 849 710 833 764 835 715 695 636 721 644 487 55.7 772 614 536 | 723

Our proposed method

GA 98.9 100.0 78.0 100.0 100.0 86.4 99.3 100.0 94.1 975 955 830 87.7 86.5 97.0 93.0 90.5 | 93.4

LUNAR PA | 1000 999 722 1000 904 990 851 96.2 837 995 984 735 583 595 86.0 735 745|853
FGA 87.0 100.0 92.3 96.8 100.0 83.3 88.5 97.1 92.6 83.8 873 874 863 86.9 96.1 88.4 92.6 | 91.3

FTA 95.7 89.7 92.3 94.6 87.5 83.3 81.2 84.3 70.2 65.7 78.9 72.1 52.6 57.4 87.0 67.4 73.8 | 78.5

primarily due to the limitations of syntax-based parsers, which rely solely on manually crafted
rules and thus struggle with complex and diverse log data. Additionally, LogMine achieves the
lowest scores in all four metrics and fails to complete the parsing process on 7 datasets within
the allocated time. Furthermore, leveraging the extensive pre-trained knowledge of LLMs, LILAC
w/o0 ICL demonstrates superior performance than syntax-based methods in PA, FGA, and FTA.
However, our label-free LLM-based parser, LUNAR, significantly outperforms LILAC w/o ICL,
with an average improvement of 12.4% in FGA and 19.5% in FTA, respectively. These substantial
improvements underscore the effectiveness of LUNAR in harnessing the zero-shot capabilities of
LLMs without labelled examples.

Compared with supervised baseline parsers, LUNAR demonstrate comparable performance
to existing state-of-the-art parser LILAC. Specifically, LUNAR outperformed LILAC by attaining
higher average scores in GA (93.4%), PA (85.3%), and FTA (78.5%), and matched the top FGA
score of 91.3%. LILAC retrieves similar logs and labelled templates to provide demonstrations
during parsing, which are often inaccessible in real-world systems. However, LUNAR achieves
a comparable performance to the state-of-the-art while does not need labelled templates, which
is more robust and generalizable in practice. Additionally, compared to UniParser and LogPPT,
LUNAR has achieved substantial improvements with an average improvements of 27.8% and 30.8%
in all four metrics. This result again highlights the advantages of LUNAR, which is not only effective,
but also requires no labelled data for training. The comparable performance of LUNAR indicates its
potential to be applied in real-world production systems, which can address the label dependency
problems of semantic-based log parsers as mentioned in Section 2.1.

On three industry datasets, LUNAR achieves the highest performance in template-level metrics,
showing an average improvement of 6.8% in FGA and 12.0% in FTA compared to the label-required
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LLM parser LILAC. This indicates that LUNAR is capable of parsing not only open-source logs but
also domain-specific logs that are unfamiliar to the LLM. Specifically on the LoFI dataset, LUNAR
substantially outperforms all unsupervised and label-required baselines across all four metrics. Since
the ground-truth templates in LoFI are manually annotated by us and have not been exposed to the
pre-training corpus of LLMs, LLMs might possess limited awareness of this system. By following
our carefully designed instructions for comparing LCUs, LUNAR effectively understand the task and
correctly generates templates. The outstanding performance on industry logs highlights LUNAR’s
generalizability, demonstrating its potential for use in industrial domain-specific systems where
logs and templates are previously unseen.

5.2 RQ2: How do different components affect LUNAR?

5.2.1 Designs. In this research question, we first assess the individual contributions of the designs
in the two components of LUNAR: the hierarchical log sharder and the two-stage LCU selector.
To accomplish this, we have implemented several variants of LUNAR by either removing or
replacing the designs in these components. Specifically, for the hierarchical log sharder, we created
two variants by removing the respective clustering stages. Additionally, for the two-stage LCU
selector, we replaced the hybrid LCU ranking algorithm with various alternatives: random selection,
simple selection based on minimum or maximum Jaccard similarity, and selection of consecutive
log messages for querying the LLMs. To mitigate the impact of randomness, we also repeated
experiment three times and calculated the mean scores as final results.

The average metric scores across all datasets of Loghub-2.0 are presented in Table 3. When the
log length-based clustering is removed from the log sharder, the end-to-end accuracy of LUNAR
drops from 93.4% to 89.1% and from 79.0% to 78.3%, respectively. Similar decreases are observed
for the variant without top-k tokens clustering. These results indicate that both stages within the
hierarchical log sharder contribute to the overall performance of LUNAR. On the other hand, for
the four variants related to the two-stage LCU selector, all four metrics show decreases across the
board. For example, replacing the hybrid LCU ranking algorithm with random selection results
in average GA and PA scores dropping by 3.0% and 2.9%, respectively. Notably, selecting the
LCU based on maximum similarities among log messages has the most detrimental impact on
LUNAR’s performance, resulting in a 4.6% decrease in GA and an 4.0% decrease in FTA. This is
primarily because selecting only the most similar log messages as an LCU for prompting prevents
the LLM from accurately identifying templates and parameters by contrasting the tokens of these
log messages. These results demonstrate that our proposed two-stage LCU selector is effective in
selecting LCUs, thereby enabling LLMs to accurately parse log messages.

5.2.2 Configurations. In addition to the two key designs of LUNAR mentioned above, we have
identified two configurations that could affect LUNAR’s performance: the LCU sample size and the
A values for LCU nomination. These configurations directly determine the LCUs for each query
provided to the LLMs, and thus, they may significantly impact the accuracy of the LLMs’ parsed
results. In this part, we explore different settings for the LCU sample size and the A values to
evaluate their impact on LUNAR’s performance across all four evaluation metrics. Specifically, we
first chose the default A value (i.e., 0.6) and varied the LCU sample sizes from 1 to 5. Additionally,
we fixed the default LCU sample size (i.e., 3) and varied the A value from 0.0 to 1.0. The average
metric scores under different settings across all datasets of Loghub-2.0 are presented in Figure 8.
Based on the results shown in the left sub-figure of Figure 8, we observe that the performance
of LUNAR remains consistently high across different LCU sample sizes. Notably, when the LCU
sample size is set to 3, GA, PA and FTA achieve their highest scores. Conversely, smaller sample
sizes result in a significant lower accuracy. For instance, with a sample size of 1, the average GA and
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Table 3. Ablation study of components in LUNAR (%). Con PA e FGA e FTA

Metrics GA PA FGA FTA
LUNAR 93.4 86.8 91.0 79.0
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w/ random selection 90.6 (| 3.0%) 84.3 (| 2.9%) 90.5 (| 0.5%) 77.7
w/ minimum similarity 88.8 (| 4.6%) 83.9 (| 4.5%) 89.5 (| 1.9%) 80.2
w/ maximum similarity 89.1 (| 4.6%) 82.8 (| 4.6%) 88.9 (| 2.3%) 75.8
w/ consecutive selection 89.2 (| 4.5%) 82.6 (| 4.8%) 90.2 (| 0.9%) 77.5

11.6%
11.4%
1 4.0%

L19% Fig.8. Sensitivity of configurationsin LUNAR.

PA scores drop to approximately 88% and 82%, respectively, which is 5.0% and 4.7% lower than the
scores achieved with a sample size of 3. This suggests that the absence of contrastive log messages
can impair the parsing ability of LLMs. On the other hand, increasing the LCU sample size to 4 or
5 results in a downward trend in accuracy. For example, the FTA score decreases from 79.0% to
77.6%. This indicates that larger LCU sample sizes may introduce additional noise and thus hurt
the accuracy of LUNAR. Therefore, we set the default LCU sample size to 3 in our experiments.

The A values for LCU nomination take into account both variability and commonality scores
when selecting LCUs for prompting. A higher A value places more emphasis on variability, while
a lower A value prioritizes commonality. As shown in Figure 8, the optimal average accuracy is
achieved when the A value is set to 0.6, indicating a balanced consideration of variability and
commonality in log messages within the LCU. When the A value is low, such as 0.0 or 0.2, all metrics
are significantly lower compared to a value of 0.6, underscoring the importance of variability in log
messages within LCUs. For instance, at a A value of 0.0, the average GA and PA scores are 2.1%
and 1.5% lower than at 0.6. Conversely, performance also declines when the A value is too high,
particularly when A = 1.0. For example, both GA and PA scores drop by 3.4% and 4.2% when the A
value increases from 0.6 to 1.0. These results illustrate that both variability and commonality scores
effectively filters log messages belonging to the same template within the LCUs, which enable
LLMs to accurately parse the log template.

5.3 RQ3: How effective is LUNAR integrated with different LLM and prompts?

5.3.1 Prompt Design. Parsing prompt is a critical element that instructs LLM to utilize its pretrained
knowledge for log parsing. In this research question, we first evaluate the contribution of four
key components of our parsing prompt. To this end, we create four prompt variants by removing
or substituting specific components, including removing parameter examples, removing output
constraints, removing parameter advice, and using simpler basic requirements from LILAC [26].
Table 4 shows the average metrics of LUNAR on Loghub-2.0 with different prompt variants, from
which we observe a consistent superior performance of our parsing prompt. In detail, replacing
or removing lead to consistent performance degradation, demonstrating that our prompt can
effectively instruct LLM to produce accurate log templates. Among the four variants, removing
output constraints results in the most significant drop in majority of the four metrics, e.g.,, FTA drops
by 40.3%. Without a clear instruction on the output format, the LLM tends to generate predictions in
a more unstructured format, complicating the process of extracting and aggregating log templates
from responses. Parameter Example and parameter advice significantly impact template accuracy
metrics (i.e., PA and FTA) but have minimal impacts on grouping accuracy metrics (i.e., GA and
FGA). For example, removing parameter advice leads to a 2.7% reduction in FTA while maintaining
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Table 4. Ablation study of parsing prompt and LLMs in LUNAR (%)
Metrics GA PA FGA FTA
LUNAR (GPT-3.5) 93.4 86.8 91.0 79.0

Variants w.r.t Parsing Prompt

w/o parameter examples 91.9 (] 1.6%) 84.1 (] 3.1%)  90.6 (| 0.4%)  77.0 (] 2.5%)
w/o output constraints 87.3(] 6.5%) 70.1(] 19.2%) 63.5(] 30.2%) 47.2 (] 40.3%)
w/o parameter advice 933(1 0.1%) 84.9(] 2.2%) 91.0(] 0.0%)  76.9 (| 2.7%)
w/ simpler requirements  89.3 (| 4.4%) 82.9 (] 4.5%) 87.4(l 4.0%) 76.2(] 3.5%)

Variants w.r.t LLM

GPT-4 93.4(10.0%) 87.0(10.2%) 92.1(71.2%) 79.8 (] 1.0%)
GPT-40 86.2 (1 7.7%) 79.5(] 8.4%) 88.5(] 2.7%)  75.1(] 4.9%)
Claude 90.4 (| 3.2%) 84.1(]3.1%) 90.0 (] 1.1%) 78.1(] 1.1%)
Llama-3.1-405B 929 (1 0.5%) 86.9(T0.1%) 90.8 (| 0.2%)  80.1 (T 1.4%)
DeepSeek-V2.5-236B 90.1 (] 3.5%) 823 (] 5.2%) 903 (] 0.8%) 78.2(] 1.0%)
Qwen2-72B 89.6 (1 4.1%) 83.1(] 4.3%) 89.0 (| 2.2%)  76.1(] 3.7%)
Llama-3.1-70B 86.6 (1 7.3%) 80.6 (] 7.1%)  89.0 (| 2.2%)  77.4 (| 2.0%)
Llama-3.1-8B 90.8 (| 2.8%) 75.4 (] 13.1%) 882(]3.1%) 65.3 (| 17.3%)
Qwen2-7B 86.0 (| 7.9%) 68.1(]21.5%) 87.3(] 4.1%) 59.3 (| 24.9%)

the same FGA. The reason could be that parameter examples and advice can help LLMs recognize
complex parameters, such as long URLs, which are often partially identical and can otherwise be
mistakenly recognized as a static part. Additionally, simpler requirements from LILAC consistently
underperform the detailed prompt, resulting a 3.5% to 4.5% drop on four metrics, primarily due to
its less informative task instructions.

5.3.2  LLMs. In our experiments, we use GPT-3.5 (gpt-3.5-turbo-0125) as the default LLM. In this
RQ, we comprehensively evaluate how LUNAR performs when integrated with various LLMs.
Specifically, we select three popular closed-source LLMs, i.e., GPT-4 (gpt-4-0613) [51], GPT-40
(gpt-40-0806)[52] and Claude (claude-3-5-sonnet-20240620)[3], along with six leading open-source
LLMs with parameter sizes ranging from 7B to 405B. These open-source LLMs include DeepSeek-
V2.5-236B (DeepSeek-V2.5) [8], the Llama-3.1 family (Meta-Llama-3.1-8B-Instruct, Meta-Llama-3.1-
70B-Instruct, Meta-Llama-3.1-405B-Instruct) [12] and the Qwen2 family (Qwen2-7B-Instruct and
Qwen2-72B-Instruct) [66].

Table 4 shows the average metrics of LUNAR using different LLMs on Loghub-2.0, from which we
can find consistent high performance across all LLMs. Specifically, LUNAR with GPT-4 consistently
outperforms both GPT-40 and Claude by a substantial margin, while showing a modest 0.6% average
accuracy advantage over GPT-3.5. This could be attributed to the enhanced reasoning capabilities
of GPT-4, powered by its larger parameter size and extensive training corpus. Despite this, GPT-3.5
is 40 times cheaper [53] while providing performance comparable with GPT-4, making GPT-3.5
our preferred choice for default LLMs due to this cost-efficiency. Among commercial LLMs GPT-
40 performs the least effectively with LUNAR, which we link to its smaller parameter size and
potentially suboptimal prompt instructions [23]. For open-source LLMs, LUNAR with Llama-3.1-
405B exhibits comparable performance to LUNAR with GPT-3.5, with slight improvements in FTA
and PA, but marginally lower GA and FGA. These results demonstrate that LUNAR is adaptable
to various LLMs while preserving high accuracy. Additionally, we observe a clear trend where
larger models (i.e., Llama-3.1-405B and DeepSeek-V2.5-236B) outperform medium-sized models (i.e.,
Qwen2-72B and Llama-3.1-70B), which in turn outperform smaller models (i.e., Llama-3.1-8B and
Qwen2-7B) across all four metrics. This performance enhancement suggests that LLM-based log
parsing may adhere to the scaling law [29], where larger size of models and pre-training datasets
leads to enhanced performance.
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5.4 RQ4: How efficient and cost-effective is LUNAR in parsing large-scale log data?

5.4.1 Efficiency Analysis. Efficiency is an essential factor for log parsers in real-world applications
due to the substantial volume of logs produced [61, 72]. In this RQ, we first evaluate the time
efficiency of LUNAR along with baseline parsers by applying them on the large-scale datasets from
Loghub-2.0, each comprising an average of 3.6 million log messages. Specifically, we recorded the
execution times for each log parser with default parameters when parsing the all log datasets in
Loghub-2.0, subsequently calculating the mean parsing time for all datasets. LogMine is excluded in
this RQ as its execution time significantly exceeds 12 hours, which is slower than the other baseline
methods by a large margin. For LUNAR, we use the default parameters introduced in Section 4.4 for
evaluation. Since LUNAR is designed to enable parallelism for processing log buckets, we compute
the average parsing time for both serial mode and parallel mode of LUNAR. The efficiency results
are demonstrated in the Figure 9.

The results demonstrate that LU-

540.1 LUNAR (parallel) NAR achieves higher efficiency com-
12632 LUNAR (serial) pared to the most efficient semantic-

488.5 E{EZ‘C based log parser, LILAC, and com-
620.1 AEL parable efficiency to the most effi-
1553.6 UniParser cient syntax-based log parser, Drain.

1963.3 LogPPT Specifically, the average parsing time

3603.5 for 3.6 million log messages in serial

0 1000 2000 3000 2000 mode using LUNAR is 1263.2 seconds.
Average time (seconds) In practice, we can leverage the paral-

lel mode of LUNAR to achieve better

Fig. 9. Efficiency of LUNAR and baselines (second). efficiency, reducing the parsing time

to just 540.1 seconds. For the most ef-
ficient syntax-based parser, Drain, which only takes an average of 488.5 seconds to parse each
dataset, LUNAR achieve comparable efficiency, only slower by 10.6%. In contrast, the most efficient
semantic-based parser, LILAC, takes an average of 620.1 seconds, which is 14.8% slower than
LUNAR. Notably, even with GPU acceleration, other semantic-based parsers such as UniParser and
LogPPT require significantly more time to parse large-scale log data. LUNAR outperforms them by
3.64 times and 6.67 times in efficiency, respectively. These results indicate that LUNAR is efficient
in parsing large-scale log data, making it suitable for application in real-world production systems.

5.4.2  Cost Analysis. LUNAR utilizes LLMs to read prompt instructions and generate templates.
Unlike traditional syntax-based and semantic-based methods, which can run efficiently on CPUs or
low-memory GPUs with low computational costs, LLM-based approaches incur additional costs
due to their reliance on cloud-based inference. Given the substantial GPU demands of LLMs, LLM
service providers, like OpenAl, offer these as remote services, providing APIs to handle input
prompts and return outputs based on token usage charges. As a result, each LLM query involves a
financial cost tied to the number of input and output tokens. In this research question, we conduct a
financial cost analysis of LUNAR compared to baseline methods to evaluate its practical feasibility.
Specifically, we compare the cost and accuracy of LUNAR with four methods, including two LLM-
based baselines (i.e., LILAC and LILAC w/o ICL) and two top-performing syntax-based baselines
(i.e., Drain and Brain). We report the (1) average accuracy of four metrics, (2) number of input and
output tokens consumed per dataset, (3) number of LLM invocations, and (4) total dollar cost per
dataset [53].
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Table 5 shows the costs of Table 5. Cost analysis
different methods. We can ob- ‘ Avg. Accuracy # Input Tokens # Output Tokens # Invocation $ Cost
serve that: (1) compared to top- prain 536 B B 0 )
performing syntax-based meth-  Brain 58.6 - - 0 0
: LILAC w/o ICL 68.9 116.3K 26.8K 7263 $0.098
ods, LUNAR achieves a substan-  rmac 83.3 68.4K 45K 2190 $0.041
LUNAR 87.1 131.7K 13.9K 269.4 $0.086

tial improvement in average ac-
curacy, with gains of 33.5% and
28.5% respectively. This improvement comes at an additional cost of $ 0.045 per dataset for LLM API
usages. Given the significant accuracy boost, this additional expense represents a reasonable trade-
off, making LUNAR a viable choice where accuracy is a priority. (2) Compared to LILAC, LUNAR
incurs an additional cost of $0.30 per dataset while achieving an average accuracy improvement of
3.8%. The increased cost primarily stems from the use of more detailed instructions and multiple
logs in an LCU, indicated by the approximately 1.5 times higher input token consumption. However,
LUNAR eliminates the costs of human annotation and demonstration selection required by LILAC,
making it a fully label-free alternative with reduced manual effort. (3) Compared to LILAC w/o
ICL, LUNAR achieves a notably higher accuracy (+18.2%) while reducing cost by $0.012 and using
significantly fewer LLM calls. This underscores LUNAR’s efficacy in unsupervised log parsing,
where incorporating detailed prompts and LCUs boosts performance without introducing excessive
costs. Overall, these findings demonstrate that LUNAR offers a cost-effective and fully label-free
solution for log parsing. By balancing cost and accuracy, LUNAR provides a practical alternative for
practitioners seeking high-performance unsupervised methods with minimal financial overhead.

6 THREATS TO VALIDITY

We have identified the following major threats to validity:

Data leakage Given that large language models (LLMs) are trained on extensive datasets, one
potential risk is data leakage. Specifically, the LLM used in LUNAR might have been trained on open-
source log datasets, which could lead to memorizing ground-truth templates instead of performing
genuine inference. However, experimental results show that simply using LLMs (LILAC w/o ICL)
yields much lower performance than LUNAR, suggesting a low chance of direct memorization.
Moreover, we present a new parsing dataset, LoFI, sourced from an industrial online service system,
with ground-truth templates manually annotated by us. The experimental results on LoFI indicate
that LUNAR can still outperform baselines by a large margin, even with previously unseen logs.
Randomness Randomness can influence the performance of LUNAR and other baseline methods.
To mitigate this issue, we minimized the randomness of the LLM by setting the temperature to 0,
ensuring consistent outputs for the same input text. Additionally, we conducted each experiment
three times for every experimental setting and used the average of these results as the final outcome.
Implementation and settings To mitigate the bias of implementation and settings, in our eval-
uation, we compared our LUNAR with state-of-the-art approaches within the same evaluation
framework. We adopted the implementations from their replication packages and benchmarks,
using the parameters and settings (e.g., number of log templates and similarity threshold) optimized
by previous work [27, 72]. Moreover, the results of the baseline approaches are consistent with the
best results in recent benchmarks.

7 Related Works

Log parsing is a critical preliminary step for various log analysis tasks [18, 30], including anomaly
detection and root cause analysis. Therefore, numerous efforts have been made to achieve accurate
and efficient log parsing [7, 11, 45, 46, 48, 49, 56, 57, 59, 67]. These log parsers can be categorized
into two types: unsupervised syntax-based and supervised semantic log parsers. Unsupervised
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syntax-based log parsers leverage predefined rules or heuristics to extract the constant parts of log
messages as log templates. For instance, SLCT [58] was the first approach to use token frequencies
to determine log templates and parameters. Drain [17] utilizes a fixed-depth prefix tree structure to
effectively extract commonly occurring templates based on specific heuristics (i.e., prefix tokens and
log length). These syntax-based log parsers do not rely on manually labelled examples. However,
their parsing accuracy can significantly decline when log data do not conform to predefined rules
or handcrafted features, limiting the adaptability and usability [26, 64]. Among these unsupervised
methods, LogMine [15] applies a similar parsing paradigm to LUNAR, which first partitions log
messages by a bottom-up clustering algorithm and then extract log templates from each cluster.
However, its extraction relies on preset parameter rules, restricting it to a narrow range of parameter
types and resulting in suboptimal accuracy.

On the other hand, semantic-based log parsers utilize neural networks [22, 37, 42, 68] or language
models [31] to identify log templates and parameters by understanding the semantics of log
messages. They require human-labelled log templates to train or tune the models by learning the
semantics and patterns in the labelled log data. UniParser [42] is one of the pioneering work in
parsing logs with a focus on their semantic meaning. It integrates a BILSTM-based semantics miner
with a joint parser to identify log templates. Additionally, LogPPT [31] proposed identifying log
templates and parameters using prompt-based few-shot learning, based on the RoBERTa model.
Recently, with the rise of large language models (LLMs), a series of LLM-based log parsers have
been developed to achieve more effective log parsing. These LLM-based log parsers leverage
fine-tuning [41] or in-context learning [26, 64] to specialize LLMs for log parsing tasks, thereby
achieving remarkable performance. However, these semantic-based log parsers heavily rely on
labelled data, which limits their ability to generalize to different types of log data or evolving log
data [27]. In contrast, our proposed unsupervised LLM-based log parser, LUNAR, does not require
labelled examples, allowing it to generalize to diverse and evolving log data.

8 Conclusion

In this work, we propose an LLM-based unsupervised log parser named LUNAR, which leverages
log contrastive units (LCUs) to facilitate effective comparisons by the LLM. To efficiently identify
effective LCUs from large-scale log data, LUNAR employs a hierarchical sharder to divide logs
into buckets, thereby reducing sampling overhead and enabling parallel computation. Additionally,
LUNAR incorporates a hybrid LCU selector that jointly measures the commonality and variability of
LCUs, which is crucial for prompting LLMs. Furthermore, LUNAR introduces an improved prompt
format to guide LLMs in a zero-shot setting and a template revision strategy to globally improve
templates. Experimental results on 14 large-scale public datasets show that LUNAR achieves high
parsing accuracy, significantly outperforming other unsupervised parsers and being comparable to
state-of-the-art parsers that require labelled data. In terms of efficiency, LUNAR is also comparable
to the fastest baseline parser, highlighting its potential for application in real-world systems.
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