
L4: Diagnosing Large-scale LLM Training Failures via Automated
Log Analysis

Zhihan Jiang
The Chinese University of Hong Kong

Hong Kong SAR, China

Junjie Huang, Guangba Yu∗
The Chinese University of Hong Kong

Hong Kong SAR, China

Zhuangbin Chen
Sun Yat-sen University

Zhuhai, China

Yichen Li, Renyi Zhong
The Chinese University of Hong Kong

Hong Kong SAR, China

Cong Feng, Yongqiang Yang,
Zengyin Yang
Huawei Cloud

Shenzhen, China

Michael R. Lyu
The Chinese University of Hong Kong

Hong Kong SAR, China

ABSTRACT
As Large Language Models (LLMs) show their capabilities across

various applications, training customized LLMs has become essen-
tial for modern enterprises. However, due to the complexity of
LLM training, which requires massive computational resources and
extensive training time, failures are inevitable during the training
process. These failures result in considerable waste of resource and
time, highlighting the critical need for effective and efficient failure
diagnosis to reduce the cost of LLM training.

In this paper, we present the first empirical study on the failure
reports of 428 LLM training failures in our production Platform-X
between May 2023 and April 2024. Our study reveals that hard-
ware and user faults are the predominant root causes, and current
diagnosis processes rely heavily on training logs. Unfortunately,
existing log-based diagnostic methods fall short in handling LLM
training logs. Considering the unique features of LLM training,
we identify three distinct patterns of LLM training logs: cross-job,
spatial, and temporal patterns. We then introduce our Log-based
Large-scale LLM training failure diagnosis framework, L4, which
can automatically extract failure-indicating information (i.e., log
events, nodes, stages, and iterations) from extensive training logs,
thereby reducing manual effort and facilitating failure recovery.
Experimental results on real-world datasets show that L4 outper-
forms existing approaches in identifying failure-indicating logs
and localizing faulty nodes. Furthermore, L4 has been applied in
Platform-X and demonstrated its effectiveness in enabling accurate
and efficient failure diagnosis.

1 INTRODUCTION
Large language models (LLMs) have revolutionized various fields

including natural language processing [36, 78] and software en-
gineering [28, 52], enabling breakthrough applications such as
code generation [30], document translation [71], and dialogue sys-
tems [79]. The superior performance of LLMs is primarily driven
by the scaling law [45], which establishes that the model capac-
ity strongly correlates with both the model size and the volume
of training data. For instance, recent models like Grok-1 [11] in-
corporate 314 billion parameters, while training datasets such as
RedPajama [74] have reached 30 trillion tokens.

To achieve state-of-the-art model capability, significant efforts
have been devoted to training or fine-tuning LLMs, which requires

∗Guangba Yu is the corresponding author.

substantial computational resources. For example, the Llama3-405B
model was trained using 16,384 H100 GPUs for 54 days [26]. To
facilitate these demanding training requirements, IT enterprises
have developed multi-tenant LLM development platforms, such as
Amazon SageMaker [3] and Google Vertex AI [10]. These platforms
allow users to submit LLM training jobs with customized hardware
resources and access to specialized software libraries and tools.

LLM training failures have become the norm rather than the
exception [31, 73, 75, 85, 88], primarily due to three key factors:
the immense scale and complexity of computational resources, the
substantial volume of training data, and the extended duration of
training processes. For instance, during the training of Llama3-405B,
Meta utilized 16,384 H100 GPUs and encountered 466 failures over a
54-day period [26]. These failures result in significant losses in both
computational resources and time, requiring substantial human
effort for diagnosis and resolution [31, 42]. A notable example
comes from BigScience’s training of the BLOOM-176B model using
384 GPUs [1]. During this procedure, each hardware failure resulted
in an average loss of 1.5 hours of training time, with the recovery
process consuming an additional 5 to 10 hours [1, 37].

As shown in Fig. 1, failure diagnosis is a critical step in the recov-
ery process following a training failure. Rapid and accurate diagno-
sis allows engineers to identify root causes, implement remediation
strategies, and swiftly resume model training. However, diagnos-
ing failures in large-scale LLM training remains a time-consuming
and labor-intensive task, primarily due to the challenges posed
by both node-level and cluster-level complexities. (1) Node-level
Complexity: An AI node typically comprises several layers [81], in-
cluding AI accelerators (e.g., GPUs and NPUs [53]), AI toolkits (e.g.,
CUDA [6]), AI frameworks (e.g., PyTorch [16] and MindSpore [13]),
and AI algorithms (e.g., Transformers [18]). The intricate depen-
dencies and interactions between these layers often result in a
multitude of noisy fault manifestations, complicating accurate fault
localization due to fault propagation. (2) Cluster-level Complex-
ity: Training large-scale LLMs training often involves thousands of
AI nodes, utilizing diverse communication paradigms such as Data
Parallelism (DP), Pipeline Parallelism (PP), and Tensor Parallelism
(TP) [69]. These complex structures make it challenging to quickly
pinpoint faulty nodes within the vast network of interconnected
components. Therefore, it is imperative to comprehensively charac-
terize LLM training failures and explore automation opportunities
to diagnose these failures.

ar
X

iv
:2

50
3.

20
26

3v
1

 [
cs

.S
E

]
 2

6
M

ar
 2

02
5

FSE Companion ’24, June 23-27, 2025, Trondheim, Norway Jiang et al.

To facilitate this need, we present an empirical study on LLM
training failures and their diagnostic procedures. Our analysis ex-
amines 428 failure reports collected between May 2023 and April
2024 from Platform-X , a large-scale production AI platform oper-
ated by Company-X , a world-leading cloud vendor. The studied
LLM training jobs involve models of considerable scale, with an
average size of 72.8 billion parameters, and require extensive com-
putational resources, utilizing an average of 941 accelerators per job.
Through our study, we have obtained several valuable findings that
can benefit future research on ensuring LLM training reliability.
The main findings are as follows:
(1) Failure timing: The majority (74.1%) of failures occur during

iterative model training, indicating that this core training pro-
cess is prone to failures, often resulting in wasted training time
and computational resources (§ 3.2).

(2) Failure causes: While the root causes are diverse, the primary
culprits are hardware and user-side faults. Notably, hardware
faults are more prevalent in LLM training compared to tradi-
tional deep learning or data processing workloads [29, 48, 89],
highlighting the unique challenges of large-scale LLM training
failure diagnosis (§ 3.3).

(3) Diagnosis methods: Training logs play a critical role in diag-
nosing failures, with 89.9% of cases requiring detailed manual
log analysis for resolution. This underscores the importance of
comprehensive log analysis in LLM training (§ 3.4).
Although Finding 3 emphasizes the importance of logs in diag-

nosis, an LLM training job can produce an enormous volume of
raw logs (e.g., serveral TBs per day), due to the extensive number
of nodes and components involved [37]. Within this vast amount
of log data, only a small subset of logs provides actionable insights
for diagnosing failures and improving the resolution efficiency,
which we refer to as failure-indicating logs. Unfortunately, manual
identification of failure-indicating logs akin to finding a needle in a
haystack.While many studies [54, 55, 67, 87] have focused on detect-
ing anomalous logs in traditional software systems, we found that
existing methods struggle to accurately identify failure-indicating
logs in LLM training scenarios. This limitation stems from their
reliance on conventional indicators such as logging level [76], event
frequency [55], and error semantic [59]. These traditional indicators
often prove inapplicable for LLM failure (details in § 4.1).

To address the limitations of existing approaches, we introduce
L4, a Log-based Large-scale LLM training failure diagnosis frame-
work designed to automatically identify failure-indicating informa-
tion and enhance diagnostic efficiency. L4 is designed based on three
distinct patterns observed in LLM training logs, i.e., cross-job, spatial
and temporal patterns. Initially, L4 parses raw training logs into
structured logs and performs cross-job filtering to eliminate noisy
logs unrelated to failures. Following this, L4 leverages the spatial
and temporal patterns of logs to pinpoint failure-indicating infor-
mation. In the spatial dimension, L4 embeds parsed logs from each
node into log event vectors and detects potential failure-indicating
nodes and log events. In the temporal dimension, L4 profiles the
training stage of logs and discovers distinctive log sequences to
localize iterationswhere faults occur. Finally, these identified failure-
indicting log events, nodes, stages and iterations enable engineers

Submit
Training

Jobs

Node Accelerator Storage

Job Scheduler

Network

Model/Data
Loading

Environment
Initialization

Iterative
Training

Job
Finished

Job Failure

Users

Failure Report

LLM Training
Platform

Save .ckptJob Start

Resource Management

Hardware

Software
DeepSpeedPyTorchCUDA

SREs

① Failure
Diagnosis

Megatron

② Failure
Mitigation

③Training
Recovery

Model Data

Figure 1: LLM training and failure management process in
LLM development platforms.
to efficiently and precisely understand and diagnose training fail-
ures. Furthermore, L4 allows engineers to summarize and confirm
fault patterns based on this mined information, which are then
archived in the fault library to match future similar failures.

We evaluated and deployed L4 on Platform-X . Evaluation using
real-world large-scale training log datasets shows that L4 achieves
high accuracy in identifying failure-indicating logs (87.3% F1-score)
and detecting faulty nodes (80% top-5 accuracy). These results sur-
passes all compared approaches, with a large improvements ranging
from 50.7% to 66.6% for log identification and 18.5% to 43.1% for
node detection. In addition, L4 has been successfully applied in
Platform-X since June 2024, where it has demonstrated effective-
ness in facilitating the diagnosis of LLM training failures.

The main contributions of this paper are as follows:
• We present an empirical study on large-scale distributed LLM
training failures, which offers valuable findings that can benefit
future research on ensuring LLM training reliability (§ 3).

• We introduce our deployed log-based large-scale LLM training
failure diagnosis framework, L4, which automatically extracts
failure-indicating information (i.e., log events, nodes, stages, and
iterations) from extensive training logs, thereby facilitating effi-
cient and effective failure diagnosis (§ 5).

• We evaluate L4 using real-world datasets from production LLM
training jobs, demonstrating that L4 outperforms other state-of-
the-art baselines. We also share our experience from over six
months of industrial application of L4 on Platform-X (§ 6).

2 BACKGROUND
2.1 LLM Development Platform-X

Platform-X is a multi-tenant LLM development platform at our
Company-X , supporting LLM training jobs for hundreds of internal
users and partner companies. The platform processes hundreds of
LLM training jobs daily, leveraging comprehensive hardware and
software infrastructure. Specifically, Platform-X is equipped with
substantial computing resources, including heterogeneous accel-
erators (e.g., GPUs and NPUs), distributed storage systems, and
high-performance networks (e.g., RDMA over Converged Ethernet
and InfiniBand). Besides, Platform-X provides comprehensive soft-
ware support for LLM training, incorporating commonly used ar-
chitecture (e.g., Ascend CANN [4] and NVIDIA CUDA [6]), popular
training frameworks (e.g., Meagtron-LM [15] and DeepSpeed [7]),
and essential libraries (e.g., Pytorch [16] and Transformer [18].

L4: Diagnosing Large-scale LLM Training Failures via Automated Log Analysis FSE Companion ’24, June 23-27, 2025, Trondheim, Norway

Job ID: 1437825 Report submission time: 2024/05/22 13:24:42
Training start time: 2024/05/21 16:27:14
Training end time: 2024/05/22 13:14:52

Resource region: DC region-1
Storage position:
S3://job_1437825/
Comp. resource: 256 x Node-type2

Hardware resource
OS image: Ubuntu 20.04
Driver: NVIDIA 525.60.13
Framework: PyTorch 2.1.0
Library: Transformers 4.33.0 ….

Model info: Llama-2-70b-chat-hf
Symptom: Job failed after 1120 steps running.
Comment: I've attempted to relaunch the job;
however, the launch still wasn't successful.

Training log:

Other data:

SRE leader: Jackie
Diagnosis root cause: Node-17 GPU-3 detached
Diagnosis procedure: there are error logs like
“rank-131 connection lost”, stress test failed…….

Software environment Monitoring data

Job metadata

Failure description Diagnostic Information

Report status: Resolved

Figure 2: An example of failure reports in Platform-X .

The LLM training job submission and execution workflow of
Platform-X closely resembles that of public platforms such as Ama-
zon SageMaker [3] and Google Vertex AI [10]. As depicted in Fig. 1,
when users submit an LLM training job, it first allocates the neces-
sary resources (e.g., nodes and storage) and initializes the training
environment based on user requirements (e.g., container images
and dependent libraries). After environment initialization, datasets
and models are loaded from remote storage, and the iterative train-
ing process begins (e.g., fetching data, forward passing, computing
loss, back-propagation, communication and saving checkpoints).

2.2 LLM Training Failure Management
Failures are frequent and can occur at any stage during the lifecy-

cle of an LLM training job [37, 73]. When encountering a job failure,
users can submit a failure report to the failure management sys-
tem in Platform-X to seek assistance from site reliability engineers
(SREs). Fig. 2 illustrated a failure report example in Platform-X ,
which mainly comprises five fields: job metadata, hardware resource,
software environment, failure description, monitoring data and diag-
nostic information. Each field includes several detailed sub-fields
to provide comprehensive descriptions of the failed training job.
Particularly, monitoring data are uploaded by users when they seek
diagnosis help. Training logs are one of the most commonly used
monitoring data types, enabling SREs to gain an in-depth under-
standing of the job’s status. Additionally, if users have enabled
additional monitors (e.g., performance and network monitors), the
recorded data can also be uploaded to aid diagnosis.

Once failure reports are submitted, they are automatically as-
signed to appropriate SREs for handling. The SREs carefully exam-
ine the failure reports and begin the fault diagnosis process, typi-
cally involving manual inspection of monitoring data (e.g., training
logs). These diagnostic processes are complex and time-consuming,
requiring SREs to communicate with users and other teams to
identify the root cause and provide recommended solutions. After
receiving feedback, users execute the suggested fixes and restart
the training job. Upon successful resolution, SREs add the fault
diagnostic process and root causes to the corresponding failure
report and archive it within the management system, building a
knowledge base for more efficient diagnosis of recurring failures.

3 LLM TRAINING FAILURE STUDY
To better characterize and understand LLM training failures and

their diagnosis procedures, we conduct the first empirical study on
these failures in Platform-X . To ensure generalizability, we avoid
drawing conclusions that are specific or ambiguous. In Sec. 8.1, we
provide a detailed discussion of the generalizability of our findings.

21.3%

57.5%

16.6%

4.7%

Failure Symptoms
Launching Failure
Training Crash
Abnormal Behavior
Others

Figure 3: Classification of LLM training failure symptoms.
3.1 Study Design
Study Subject.We collect and study 428 failure reports of failed
LLM training jobs in Platform-X from May 2023 to April 2024,
after eliminating duplicated reports. These LLM training jobs en-
compass a diverse range of trained models (e.g., LLaMA [26] and
Vicuna [24] series), training frameworks (e.g., PyTorch [16] and
Transformer [18]), and underlying hardware. Furthermore, all jobs
in our study were all large-scale, characterized by substantial model
sizes and significant computational resource usage. Specifically, the
average model size is 72.8B parameters, and the average number of
accelerators utilized per job is 941.
Study Method. In this study, we comprehensively analyze all 428
LLM training failures and their diagnostic procedures by addressing
the following research questions (RQs):
• RQ1:What are the common symptoms of LLM training failures?
• RQ2:What are the common root causes of LLM training failures?
• RQ3: What monitor data sources are typically used to diagnose
LLM training failures?
We developed a taxonomy for each RQ and categorized each

failure report. To avoid potential bias, a team of five experienced
SREs and Ph.D. students conduct the classification process. Each
annotator independently labeled the categories for three factors of
each failure by thoroughly reviewing the documented diagnostic
information. We used Cohen’s kappa [25] to assess inter-annotator
agreement, achieving near-perfect agreement for each taxonomy,
with all scores exceeding 0.95. For cases with discrepancies, an-
notators engaged in discussions and, when necessary, consulted
the submitters and corresponding SREs. Ultimately, consensus was
reached for the categorization of all 428 failure reports.
3.2 RQ1: Failure Symptoms

We first study common symptoms of LLM training failures. A
symptom is the subjective manifestation of a failure observed by
users, which is manually categorized by engineers. These symptoms
are divided into four categories: launching failure, training crash,
abnormal behavior and others. The distribution of these failure
symptoms across all 428 LLM training failures is illustrated in Fig. 3.

Failures occurring prior to the iterative training stage, such as
during environment initialization, are classified as launching fail-
ures. These failures account for 21.3% of all reported issues, as
shown in Fig.3. For instance, mismatches between the GPU driver
and CUDA toolkit versions can cause failures during environment
initialization, and misconfigurations in model parallelism can lead
to errors during model loading. The complexity and large scale of
LLM training jobs pose great challenges for users and engineers in
preventing these launching failures.

After the iterative training starts, the job may crash due to vari-
ous reasons such as hardware faults. These issues are frequent in
LLM training due to its strong synchronization properties [37, 73,

FSE Companion ’24, June 23-27, 2025, Trondheim, Norway Jiang et al.

75], i.e., a local fault in a specific component (e.g., a GPU or network
router), can disrupt the entire training job. According to Fig. 3, these
training crash failures represent 57.5% of all failures. Such crashes
often result in waste of training time and computational resources,
as they typically occur after prolonged training periods [37, 42, 85].
Even with the checkpointing mechanisms [27, 31, 73, 88], the time
required for failure recovery remains substantial [31, 63].

Moreover, certain training jobs may exhibit abnormal behaviors
like hanging or slowing down [42, 46]. For instance, an epoch might
take twice as long, or training could stall at a specific iteration with
no RDMA network traffic. In such cases, users can submit failure
reports to SREs for helping diagnose these issues. Notably, such
abnormal behaviors account for 16.6% of the total failure reports.

The final category is Others, which includes failures not directly
related to a specific LLM training job, such as unavailability of
platform and remote storage. This type of failure accounts for only
4.7% of the total failures.
Finding 1: Most LLM training failures (74.1%) occur during
the iterative training stage, which can waste significant com-
putational resources and training time.

3.3 RQ2: Failure Root Causes
In this section, we study the common root causes of all 428 LLM

training failures and their manifestations in monitor data, catego-
rizing them into four categories: hardware fault, user fault, platform
fault and framework fault. Due to privacy concerns, specific distri-
bution proportions are withheld.

3.3.1 Hardware Fault. Similar to other LLM platforms, Platform-
X is built with heterogeneous hardware, including nodes (e.g.,
physical servers and virtual machines), accelerators (e.g., GPUs,
TPUs and NPUs), networks (e.g., RoCE and InfiniBand), and re-
mote distributed storage. As LLM training jobs scale increase, the
required hardware resources also grow, raising the probability of
hardware faults [42, 73, 85]. Due to the synchronous properties of
LLM training, a single-point hardware fault can cause the train-
ing failure, making hardware fault the most common failure root
cause in our study. This proportion is much higher than that re-
ported in previous studies on data processing and deep learning
failures [29, 40, 48, 60, 89], indicating that LLM training procedures
are more susceptible to hardware faults.

We identified four primary sub-types of hardware faults:
Network Fault. Training LLMs demands extensive computational
resources, typically involving tens to thousands of compute nodes
interconnected via high-speed networks like RoCE. The training
process utilizes various parallelism paradigms, which necessitate
communication between compute nodes during each iteration. As
a result, network issues can impact the training process, potentially
causing performance degradation, hang and failures. Therefore,
among different types of hardware faults, network faults are the
most common cause of training failures. When such faults occur,
error log messages such as “NIC port link down” and “increased

pcs_err_cnt” [14] may indicate network port failures.
Accelerator Fault.Accelerators, including GPUs, TPUs, and NPUs,
are the primary computing devices for LLM training. Although the
fault probability for a single accelerator is low, the overall fault
probability during the training procedure is high due to the large

number of accelerators involved [73, 75]. Similar to traditional GPU
systems [35, 70], accelerators can experience memory faults such
as error correcting code (ECC) errors and stuck-at errors caused by
circuit malfunctions. Power faults can also render accelerators un-
available. Common error log messages like “double bit ecc error”
indicating ECC memory errors [8] and “Aicore kernel execute

failed” signifying computational faults [2].
Node Fault. A node (e.g., a virtual machine) is an allocated unit for
training jobs, containing CPUs, memory, and other resources. In
large-scale clusters, node faults such as mainboard damage, power
leakage, and disk errors are inevitable and can cause training fail-
ures in Platform-X . When a node fails, it typically becomes inacces-
sible, making it impossible to retrieve logs for direct fault diagnosis.
In these cases, Platform-X relies on heartbeat mechanisms to detect
node failures. The absence of regular heartbeat signals from a node
is a key indicator of a node fault.
Storage Fault. The datasets, models, and checkpoints used in LLM
training can be extremely large, often exceeding hundreds of gi-
gabytes [85]. Users typically apply for remote distributed storage
and store their data there. All nodes load data from the remote stor-
age to start training, and checkpoints are periodically generated
and stored there during the training process. Hence, any faults in
remote storage can cause training failures at different stages. For
example, an error log message “Failed to load checkpoint” [9]
may indicate issues with accessing stored model states.

Finding 2: LLM training procedures are vulnerable to hardware
faults due to the extensive computing resources required. These
faults can occur at network, accelerator, node, and storage, with
network and accelerator faults being the most prevalent.

3.3.2 User Fault. Before submitting a failure report, users typically
review their operations to attempt to resolve the issue themselves.
Despite these efforts, user fault remains the second largest root
cause of failures among all four categories, due to the complexity of
user-side settings for LLM training jobs, including configurations,
code, scripts, and more. Specifically, we identified four major sub-
types of user faults in our study:
Configuration Error. Some LLM training failures are caused by
misconfigurations in system environments and frameworks. When
submitting LLM training jobs, users must manually configure a
series of configurations. Even a minor misconfiguration can lead to
training failures. For example, a user mistakenly set a low timeout
threshold for Notify register, resulting in a timeout log message
“The wait execution of the Notify register times out.” and
subsequent training process failure [19].
Program/Script Bug. Similar to traditional software, buggy code
can exist in LLM training programs and scripts, as comprehensively
studied in previous empirical research [58, 72, 84]. For instance, us-
ing inappropriate sub-process creation during training can cause the
training process to get stuck [5]. Since LLM training programs and
scripts are typically adopted and modified from existing projects,
most bugs occur in the modified parts, caused by inconsistencies
between the original and modified code, such as error paths, null
references and inconsistent model parameters.
Software Incompatibility. LLM training requires specific soft-
ware such as operating system images, drivers, training frameworks,

L4: Diagnosing Large-scale LLM Training Failures via Automated Log Analysis FSE Companion ’24, June 23-27, 2025, Trondheim, Norway

libraries, and toolkits, specified by users before submitting train-
ing jobs. Version incompatibility is common due to independent
component development [29, 37], with even minor mismatches
potentially causing build or compilation failures. Typically, such
failures could be reflected in the logs with an inappropriate version
(e.g.,“Stream mode cannot be set in current driver version” [17])
Consequently, users need to carefully verify the compatibility of
the relevant software versions or utilize pre-configured version
information when submitting their LLM training tasks.
Misoperation. While Platform-X simplifies the LLM training pro-
cess, users still need to learn the operational procedures. Hence,
users’ misoperations can also result in LLM training failures. For
example, using external remote storage for checkpoints without
configuring proper access permissions can cause checkpoint writ-
ing to fail, resulting in a training crash.

Finding 3: User faults constitute the predominant cause of
LLM training failures due to the complexity of the settings.
These faults include configuration error, program/script bug,
software incompatibility and misoperation.

3.3.3 Framework Fault. Platform-X supports various open-source
LLM training frameworks and libraries, including widely used op-
tions such as PyTorch [16] and DeepSpeed [7], as well as customized
frameworks like CNTK [68]. Like other software systems, these
training frameworks are susceptible to various bugs. Consequently,
framework faults account for a small proportion of the 428 fail-
ures we studied, often arising from buggy code and inconsistencies
during software iterations. We have identified that, compared to
widely used LLM training frameworks like PyTorch, customized
LLM training frameworks are more prone to faults due to their
relative immaturity. These framework faults are particularly chal-
lenging to diagnose because they require a deep understanding
of the specific training framework and significant expert effort to
locate the buggy code and logic. Moreover, fixing these bugs often
requires version updates, so temporary mitigation strategies, such
as version rollback, are commonly adopted until the bugs are fixed.
3.3.4 Platform Fault. Platform-X is a large-scale, multi-tenant plat-
form that provides comprehensive support for LLM training. De-
spite careful design and iterative updates, platform-side faults are
inevitable, causing the least proportion of LLM training failures.
These faults arise from various system defects, with the most com-
mon type involving resource management issues, such as logical
bugs in isolating abnormal nodes and mounting remote storage.
Other defects can occur in modules like job scheduling (e.g., ab-
normal preemption) and platform configurations (e.g., network
settings). These platform failures are highly severe and prioritized,
requiring SREs to spend a significant amount of time resolving
them promptly.

Finding 4: Although framework and platform faults cause
relatively fewer LLM training failures, their diagnosis and miti-
gation are more challenging. Thus, the reliability of the LLM
training frameworks and platforms deserves attention.

3.4 RQ3: Data Sources of Failure Diagnosis
Troubleshooting LLM training failures is challenging due to the

complexity and scale of components, stages, and resources involved.

Based on the analysis of diagnostic procedures documented in 428
failure reports, the average time to diagnose LLM training
failures is 34.7 hours, with approximately 41.9% of failures
requiring more than 24 hours for diagnosis. This highlights
the time-consuming and labor-intensive nature of the diagnostic
process. To support failure diagnosis and better understand run-
time behavior, LLM platforms, including Platform-X , are typically
equipped with a variety of monitors that collect runtime informa-
tion, such as training logs, performance metrics, and network traffic
data. In this research question, we investigate the monitoring data
sources typically used in the diagnosis process to better understand
and improve failure diagnosis in LLM training platforms.

Similar to traditional software, training logs from different com-
ponents capture detailed runtime information about the training
procedure, offering valuable insights for users and engineers to
understand the system’s status [34, 82, 83]. Consequently, logs are
a top priority for diagnosing LLM training failures in Platform-
X in practice. We meticulously reviewed the diagnosis processes
recorded in all 428 failure reports and categorized each training fail-
ure into three diagnostic types: (1) Log-only diagnosable: Only
training logs are involved in the diagnosis process. (2) Non-log di-
agnosable: Training logs do not provide useful clues for diagnosis.
(3) Hybrid diagnosable: Both training logs and other monitoring
data (e.g., performance metrics) are jointly used for diagnosis.

The distribution of failure diagnostic types is shown in Tab. 1.
Notably, 53.9% of LLM training failures can be diagnosed using train-
ing logs alone, without additional monitoring data. This is because
these logs, which include information from the training process,
framework, hardware, and platform, provide comprehensive run-
time details essential for diagnosing various types of faults in many
cases. For instance, if there is an error log “The ranktable or rank

is invalid,Reason:[%s].” [12], SREs can immediately notice the is-
sues with the parallelism rank configurations and manually inspect
the configuration files to determine the root causes.

However, there are also 10.1% of training failures where training
logs do not aid in the diagnosis. In these cases, the logs either lack
the necessary failure-indicating information or do not reflect the
failure at all. Consequently, SREs cannot rely on the LLM training
logs to localize the faults. Additionally, 36.0% of training failures
fall into the category of hybrid diagnosable failures. In diagnosing
these failures, SREs typically begin by examining the training logs
to identify potential faulty components. If the logs do not provide
sufficient information to pinpoint the exact faulty components and
root causes, SREsmust then investigate other monitoring data to aid
in the diagnosis. These additional monitoring data typically include
metrics of operator delay, GPU utilization rate, network packet loss,
disk I/O rate and node heartbeats, which can help identify issues
that are not explicitly reflected in the training logs.

In conclusion, training logs are the most crucial data source for
diagnosing LLM training failures, with approximately 90% of such
failures requiring the information contained within these logs for
diagnosis. However, the volume of training logs can be substan-
tial, as each distributed process rank generates logs independently,
and training durations are often extensive. The average size of
training logs for the failures we studied is 16.92GB. Conse-
quently, manually checking and identifying the failure-indicating
logswithin this volume of data is time-consuming and labor-intensive.

FSE Companion ’24, June 23-27, 2025, Trondheim, Norway Jiang et al.

Table 1: LLM Training Failures Across Diagnosis Types

Diagnosis Type Log-only Non-log Hybrid
Percentage 53.9% 10.1% 36.0%

Moreover, 46.1% of training failures cannot be diagnosed solely
through training logs and require supplementary system moni-
toring data. This finding highlights the importance of developing
comprehensive monitoring systems for LLM training platforms
to improve the efficiency of failure diagnosis and facilitate rapid
failure recovery.

Finding 5: Training logs are invaluable for diagnosing most
(89.9%) LLM training failures, but their large volume under-
scores the need for advanced log diagnostic tools for identifying
the failure-indicating logs.

4 AUTOMATION OPPORTUNITIES
Our study results show that the automated identification of

failure-indicating logs from large-scale training logs is crucial to
enhancing the efficiency of failure diagnosis. Therefore, in this
section, we explore the automated opportunities for diagnosing
LLM training failures based on training logs.

4.1 Limitation of Existing Approaches
Numerous studies [22, 39, 54, 55, 59, 67] have focused on detect-

ing anomalous logs in software systems. These methods leverage
features such as logging level [76], event frequency [55], and error
semantic [47] to distinguish anomalous logs. The anomalous logs
detected serve as a potential failure indicator for fault diagnosis.

We have applied existing log-based anomaly detectors to LLM
training logs on Platform-X , but our SREs reported that these meth-
ods struggle to distinguish failure-indicating logs from unrelated
ones. This issue stems from inherent limitations of the character-
istics utilized by these detectors, rendering them ineffective for
LLM training logs. To better understand these characteristics, we
randomly sampled 100 failures and manually labeled the failure-
indicating logs within their training logs according to the docu-
mented failure diagnosis procedure. Then, we analyzed the logging
level, event frequency, and error semantics of these training logs.
Logging Level. Logging levels (e.g., error, warning, info, and debug)
indicate log importance. Traditional log analysis methods [21, 82]
prioritize more serious logs, such as those at the error level. We
examined the distribution of failure-indicating logs across different
levels in our sample dataset, as shown in Fig. 4(a). It is evident that
about half (54.8%) of these logs are at the error level. The rest are
spread across all log levels, including info (13.6%) and debug (8.5%),
showing that logs at various levels can provide valuable insights for
failure diagnosis. Furthermore, we observed that many error-level
logs are not related to training failures. These discrepancies arise
because log levels, which are determined by individual LLM training
component, do not always reflect the overall severity and urgency
in the training process. For example, a log with failed checkpoint
writing to remote storage might be logged in the error level by the
checkpointing module, but if the fault-tolerance design allows for
successful rewriting, this log does not impact the training process
and thus is unrelated to failures.

Log Level0

20

40

60

Pe
rc

en
ta

ge
 (%

)

54.8

23.1
13.6

8.5

error
warning
info
debug

(a) Different logging levels.

Log Frequency0

20

40

60

Pe
rc

en
ta

ge
 (%

)

57.9

13.7 12.1 16.3

0~25%
25~50%
50~75%
75~100%

(b) Different event frequencies.
Figure 4: Distributions of LLM failure-indicating logs.

Event Frequency. Event frequency is commonly used to detect
anomalous logs, based on the intuition that infrequent log events are
more likely to be anomalous [55, 77]. However, this assumption does
not hold for LLM training logs. On the one hand, most infrequent
logs are not failure-indicating logs. Due to the numerous stages and
steps in the LLM training procedure, many logs occur infrequently
or even once during the entire process. However, most of these
infrequent logs are unrelated to diagnosing training failures. On the
other hand, failure-indicating logs are not necessarily infrequent,
especially those during the training iteration phase.We analyzed the
event frequencies of failure-indicating logs in our sample dataset, as
shown in Fig. 4(b). We categorized these logs into four groups based
on their occurrence frequency, corresponding to the percentiles
of lowest 0-25%, 25%-50%, 50%-75%, and 75%-100%. The results
show that although more than half (57.9%) of the failure-indicating
logs fall within the lowest 25% frequency, a notable portion still
occur frequently, e.g., 16.3% of these logs are within the highest
25% frequency. Therefore, relying solely on frequency to identify
failure-indicating logs is infeasible.
Error Semantic. Recent work [47, 49] has leveraged deep learning
models, such as language models, to detect anomalies by analyzing
the semantics of logs. Logs with error semantics are flagged as
anomalous and potential failure indicators. However, these meth-
ods fall short in detecting failure-indicating logs in LLM training
logs. Firstly, not all logs with error semantics indicate failures. Logs
with error semantics from specific components or stages may not
affect the training process or lead to failures. We have observed that
even in some successful training jobs, there are logs with errors
in building wheels or recording hardware status, which are unre-
lated to failures. Secondly, not all failure-indicating logs exhibit
error semantics. Some training failures manifest through abnor-
mal behaviors rather than explicit error messages, making them
undetectable by current semantic-based methods.

Finding 6: Existing log-based anomaly detectors struggle to
effectively identify failure-indicating logs, as traditional anoma-
lous log characteristics (i.e., level, frequency and semantic) are
not suitable for LLM training log scenarios. More effective ap-
proaches tailored for LLM training logs are needed.

4.2 Distinct Patterns of LLM Training Logs
Despite the inherent limitations of existing log analysis meth-

ods, we have observed three distinct patterns that can be used to
automatically pinpoint failure-indicating logs.
Cross-job Pattern. In practice, each failed training job is usually
associated with a series of successful jobs with identical settings
(e.g., models and frameworks). For example, users typically validate
configurations on a small scale of nodes before scaling up. Therefore,
when analyzing a failed training job’s logs, it is useful to review the

L4: Diagnosing Large-scale LLM Training Failures via Automated Log Analysis FSE Companion ’24, June 23-27, 2025, Trondheim, Norway

Fault Library

(Filtered) Logs

Failed Job

Pattern
Matching

Raw Log Data Parsed Logs

Historical
Successful Job

Cross-job Filtering

Normal
Logs

Failed
Logs

SREs

Spatial Pattern Comparison

Temporal Pattern Comparison

• Logs
• Nodes

Failure-indicating Information
• Logs
• Stages
• Iterations

Log Preprocessing

Fault Pattern Confirmation
slicing time windows log sequences

DTW
anomalous similarity

(𝑆!, 𝑆", 𝑆#, …)

12
6
55
31

isolation forest log event vectors logs of nodes

Figure 5: The overall framework of L4.
logs of historical successful jobswith the same settings. As discussed
in Sec. 4.1, even normal training jobs can produce numerous noisy
error logs. Comparing logs from successful and failed jobs can help
filter out unrelated noise and identify cross-job patterns.
Spatial Pattern. Different from traditional software, the workflow
of nodes in LLM training systems is highly synchronized and nearly
identical. Consequently, the distributed log sequences generated by
different nodes are very similar. As noted in Sec. 3.3, local faults such
as hardware faults cause a significant proportion of training failures.
In such cases, logs from the faulty node can exhibit different patterns
compared to others. Therefore, this spatial pattern in LLM training
logs allows for comparison across nodes, enabling identification of
differential logs that may indicate potential failures.
Temporal Pattern. The LLM training procedure consists of mul-
tiple stages, each with distinct log characteristics. These features
can help identify the stage where a failure occurred and filter out
unrelated logs. For instance, if the iterative training stage has suc-
cessfully started, error logs from the data and model loading stage
are likely irrelevant. Furthermore, as discussed in Sec. 3.2, most LLM
training failures occur during the iterative training stage, where the
workflow of all nodes is periodic and identical for each iteration.
This temporal pattern can be used to compare logs across different
iterations to automatically identify failure-indicating logs.

Finding 7: LLM training logs display special cross-job, spatial
and temporal patterns, which can be leveraged to automatically
identify failure-indicating logs.

5 OUR FRAMEWORK: L4
Building on these observations, we propose L4, a Log-based

Large-scale LLM training failure diagnosis framework designed to
automatically extract failure-indicating information from exten-
sive training logs and improve diagnostic efficiency. The overall
framework is illustrated in Fig. 5, containing four main phases.

5.1 Log Preprocessing
The raw logs of a training job are substantial (e.g., tens of gi-

gabytes) and unstructured, making them unsuitable for analysis.
To address this issue, we first preprocess the unstructured training
logs through log parsing, transforming them into structured log
events. Specifically, log parsing aims to extract the constant parts
of logs as templates and the variable parts as parameters, which
has been widely studied [38, 43, 44]. This structured information

facilitates the identification of identical log events with varying pa-
rameters, enabling subsequent automated log analysis. In this work,
we adopt the widely-used and most efficient log parser, Drain [33],
for log preprocessing. Following this parsing process, all raw logs
are converted into sequential log events for further analysis.

5.2 Cross-job Filtering
As outlined in Sec. 4.2, it is common for users to submit LLM

training jobs with large-scale training nodes after successfully ex-
perimenting with smaller-scale ones [84]. This practice generates a
history of successful jobs that share similar settings (e.g., trained
models and environments) with the failed job. Intuitively, log events
that are present in both successful and failed jobs are unlikely to
indicate the failure root causes. Therefore, these log events can be
filtered out to reduce noise and enhance the analysis efficiency.

To achieve this filtering process, we first gather all log events
from the parsed logs of the historical successful jobs to construct
a normal log event pool, denoted as N = {𝑒𝑛1, 𝑒𝑛2, · · · }. Next, we
examine the parsed logs of the failed job and remove all log events
that are frequently present in N while preserving the original
chronological order of the logs. This step typically results in a
significant reduction in the volume of logs compared to the original
unfiltered logs, which is beneficial for subsequent analysis as it
reduces the amount of extraneous information. In cases where
historical successful jobs are not available, we proceed by directly
using the parsed logs of the failed training job for further processing.

5.3 Spatial and Temporal Pattern Comparison
Inspired by the spatial and temporal pattern discussed in Sec. 4.2,

this phase aims to identify failure-indicating information, such as
log events, nodes, stages and iterations, by analyzing the spatial
distribution and temporal sequence of training logs. These types of
interpretable information can be easily understood by engineers,
facilitating more effective troubleshooting and in-depth analysis.

5.3.1 Spatial pattern comparison. Since the workloads distributed
across nodes during the LLM training are nearly identical, it is
expected that the training logs from these nodes will display similar
patterns. Therefore, examining the divergences in these patterns
can reveal potential failure-indicating logs and suspicious nodes. To
facilitate this analysis, we first transform the parsed log events of
each node into log event vectors, following previous studies [61, 77].
Specifically, the log event vector for each node is denoted as 𝑉 =

FSE Companion ’24, June 23-27, 2025, Trondheim, Norway Jiang et al.

[𝑐1, 𝑐2, · · · , 𝑐𝑛], where 𝑛 represents the total number of distinct log
events in the training logs and 𝑐𝑖 denotes the count of events of
the 𝑖 -th log event. This representation effectively captures both
the occurrence and frequency information of training log events,
providing an overview of training logs for each node.

After vectorization, we employ the Isolation Forest (iForest) [57]
algorithm to detect deviant log event vectors across these nodes.
The iForest algorithm constructs a collection of isolation trees that
isolate anomalies by randomly selecting a feature and then ran-
domly selecting a split value between the maximum and minimum
values of the selected feature. The depth of a sample, averaged
across the forest, serves as its anomaly score, with samples exhibit-
ing noticeably shorter average path lengths being more likely to be
anomalies. We select the iForest algorithm for two primary reasons:
(1) It is an unsupervised method that does not require labeled data,
making it highly adaptable to various training jobs. (2) It provides
interpretability by indicating the anomalous degree of each log
event vector, which allows us to identify not only anomalous nodes
but also specific log events contributing to the anomalies. Finally,
our spatial pattern comparison module utilizes the results from the
iForest algorithm to pinpoint suspicious nodes and potential failure-
indicating logs, which are then used for further troubleshooting.

5.3.2 Temporal pattern comparison. As discussed in Sec. 2.1, LLM
training can be divided into multiple stages. These stages are typ-
ically recorded in the training logs, as LLM training frameworks
often generate logs that denote the commencement and conclusion
of each stage like data loading, model initialization. Consequently,
in this module, L4 first employs predefined rules to categorize
identified logs in earlier phases into different stages. This stage in-
formation helps SREs in broadly determining the stage at which the
root causes may occur, thereby facilitating more efficient diagnosis.

Furthermore, the findings in Sec. 3.2 reveal that most LLM train-
ing failures occur during the iterative training phase, where each
iteration involves executing a similar workload. Thus, log event se-
quences across iterations are expected to follow consistent patterns.
Consequently, a log sequence that significantly deviates from those
of preceding iterations could indicate a problematic iteration where
a fault may occur. To identify such failure-indicating iterations, we
initially transform the parsed log events from each iteration into se-
quences of events, denoted as 𝑆𝑖 = [𝑒1, 𝑒2, . . . , 𝑒𝑘]. We then choose
the dynamic time warping (DTW) distance [64], which can dynami-
cally align similar patterns in log sequences, to assess the similarity
between log sequences from different iterations. Subsequently, we
select the slicing time window with ten iterations to calculate the
average similarity scores between the log sequences of the current
iteration and those of its antecedent iterations within this window.
Upon computing the similarity scores for all iterations, we apply
the three-sigma rule [66] to detect any anomalous scores that are
significantly lower than the average. If such anomalies are detected,
we identify and recommend these suspicious iterations and the logs
within them as potentially failure-indicating information.

5.4 Fault Pattern Confirmation
Following the aforementioned three phases of log analysis, L4

can automatically extract potential failure-indicating information,

including suspicious logs, nodes, stages, and iterations from sub-
stantial training logs. This automation circumvents the need for
manual examination of extensive raw training logs, thereby sig-
nificantly enhancing the diagnostic efficiency of training failures.
Additionally, the recommended information offers valuable insight
for SREs, enabling them to swiftly understand the behavior and
status of failures and accurately pinpoint their root causes. After
completing the diagnosis procedure, SREs summarize the log-based
fault pattern of the failure and archive it in the historical fault li-
brary. These confirmed fault patterns can be later used to directly
match the training logs of new failed jobs, thereby improving the
efficiency of handling similar failures in the future.

6 EVALUATION
6.1 Experiment Designs
Evaluation Objective. We evaluate the effectiveness of L4 by
answering the following two research questions (RQs):
RQ4: How effective is L4 in identifying failure-indicating logs?
RQ5: How effective is L4 in locating faulty nodes?
Dataset. Our dataset comprises log files from 100 randomly sam-
pled failed distributed LLM training jobs in our study dataset in
Sec. 3, each averaging 632 accelerators. Each accelerator corre-
sponds to an individual process rank, thus generating a distinct log
file. As a result, the average log volume of each failed job is 12.3
GB. We manually labeled the failure-indicating log events for each
case based on the recorded diagnostic procedure outlined in the
corresponding failure report. Specifically, within these cases, 42
were caused by hardware faults related to specific network devices,
accelerators, and nodes. For these cases, we marked the machines
directly associated with the faulty component as the faulty nodes.
Baselines. (1) In RQ4, we compare L4 with three state-of-the-art,
open-source log anomaly detection methods: LogAnomaly [62],
LogRobust [86], andNeuralLog [23]. These baselinemethods rely on
labeled log data for training to achieve high accuracy. Accordingly,
we train the models using log data from 30% of failed LLM training
jobs and test their performance on the remaining 70%. (2) In RQ5,
since no existing log-based methods are designed for faulty node
localization, we compare L4 with two simple baselines, Error_time
and Error_count, based on the practical intuition that nodes with
earlier or more frequent error logs are more likely to be faulty. In
detail, Error_time ranks nodes by the time of their first error log,
while Error_count ranks nodes by the total number of error logs.
Metrics. For RQ4, we compare the labeled failure-indicating logs
with the detected anomalous logs, using precision, recall, and F1-
score as evaluation metrics, following previous work [23, 62]. For
RQ5, since L4 can rank the detected suspicious nodes based on
the anomaly degree, we use top-k accuracy to assess the results, is
calculated by the proportion of the labeled faulty nodes that are
included in the top-k candidates.

6.2 Experiments Results
RQ4: The effectiveness of identifying failure-indicating logs.
We first conduct experiments to measure the capabilities of L4 and
other cutting-edge log-based anomaly detection methods in LLM
training failure scenarios. Specifically, precision, recall, and F1-score

L4: Diagnosing Large-scale LLM Training Failures via Automated Log Analysis FSE Companion ’24, June 23-27, 2025, Trondheim, Norway

L4 LogAnomaly LogRobust NeuralLog
Methods

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 S
co

re
s

0.786

0.248 0.213
0.129

0.982

0.701

0.488 0.524

0.873

0.366
0.297

0.207

Precision Recall F1 Score

Figure 6: Effectivenss for identifying failure-indicating logs.

are calculated by contrasting the ground-truth failure-indicating
log events with the detected anomalous log events.

The experimental results are presented in Fig. 6. It is noteworthy
that the existing log-based anomaly detectors exhibit poor perfor-
mance when analyzing LLM training logs. Evidently, the F1-scores
of all baselines are considerably lower, ranging from 0.207 to 0.366.
This is primarily due to the low precision of these methods, as they
fail to account for the specific patterns within distributed training
logs, thereby resulting in false positive reports of anomaly logs. Fur-
thermore, their recall scores are also inferior to that of L4, and there
are two main reasons for this. First, as investigated in Sec.4.1, many
failure-indicating logs do not conform to the traditional anomalous
characteristics (e.g., low frequency) utilized by these methods. Sec-
ond, these methods rely heavily on labeled training data, and when
dealing with new log data (e.g., LLM training jobs with different
frameworks), their accuracies are restricted.

In contrast, L4 consistently surpasses other baselines across all
metrics. In particular, L4 attains a high average recall of 0.982,
demonstrating its robust ability to precisely identify failure-indicating
logswithout omission. Although L4 ’s precision (0.786) is marginally
lower than its recall due to the existence of noisy logs, it still re-
mains substantially higher than that of the other baselines. Given
that the detected results are intended for further examination by
SREs, recall is prioritized over precision. The high F1-score of L4,
exceeding baseline methods by over 0.507, further validates its
superior balanced performance.
RQ5: The effectiveness of locating faulty nodes.As discussed in
Sec. 3.3, hardware fault is the most common root cause of LLM train-
ing failures. L4 can unsupervisedly rank potentially faulty nodes
based on their anomaly degrees through spatial pattern comparison.
In this RQ, we evaluate the accuracy of L4 and two baselines in
finding faulty nodes in cases of hardware-related training failures.

As shown in Fig. 7, L4 significantly outperforms two baselines
across all metrics, with improvements ranging from 18.5% to 43.1%.
For example, the top-1 accuracy of L4 in localizing faulty nodes is
65.8%, compared to 47.3% and 36.7% for Error_time and Error_count,
respectively. This demonstrates that relying solely on error log
time and count is insufficient for identifying faulty nodes. Further-
more, L4 ’s accuracy increases with the number of candidate nodes,
reaching 91.2% when considering the top 8 candidates. These re-
sults indicate that L4 effectively detects anomalous log patterns in
faulty nodes under hardware-related failure scenarios by leveraging
spatial patterns. It is also worth noting that not all faulty nodes
will exhibit the most anomalous log patterns. In some cases, nodes

Top-1 Acc. Top-3 Acc. Top-5 Acc. Top-8 Acc.
Metrics

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 S
co

re
s

47.3% 49.8% 52.1%
56.4%

36.7%
41.6% 43.9% 48.1%

65.8%
72.7%

80.5%

91.2%
Error_time Error_count L4

Figure 7: Effectivenss for locating faulty nodes.

associated with the faulty node (e.g., those in the same communi-
cation area) may also produce outlier log patterns. Consequently,
L4 recommends multiple top-ranked anomalous nodes (the top 8
by default) that exceed an anomalous degree threshold for further
investigation by SREs. In large-scale LLM training scenarios involv-
ing thousands of nodes, such recommendations greatly enhance
diagnostic efficiency by narrowing the scope of investigation.

7 DEPLOYMENT EXPERIENCE
L4 has been successfully applied in the failure management sys-

tem of Platform-X to analyze the training logs of failed LLM training
jobs since June 2024. Once a failure report is reported, L4 first at-
tempts to match its training logs with historically confirmed fault
patterns in the fault library. If the match is successful, the recorded
root cause and fix solutions are retrieved and recommended to
SREs. Otherwise, L4 automatically analyzes the extensive training
logs by identifying failure-indicating log events, nodes, stages and
iterations, which are then recommended to SREs for further under-
standing and diagnosis. This procedure significantly reduces the
manual effort required to investigate substantial raw training logs.
In the following, we depict two real-world cases illustrating the
effectiveness of L4 in diagnosing LLM training failures.
Case 1: Fine-grained Localization of Hardware Fault. As stud-
ied in Sec. 3.3, hardware faults are the most common cause of
LLM training failures. Localizing these faults to specific hardware
(e.g., nodes, accelerators, and network links) was previously labor-
intensive and time-consuming due to the large scale of training
resources. However, with L4, SREs can promptly pinpoint the faulty
hardware causing training failures. For instance, an LLM training
job involving 1024 nodes with 4096 accelerators on Platform-X
failed after 20 hours of training, producing 71 GBs of latest train-
ing logs. L4 was employed to analyze these substantial logs and it
identified eight nodes with log event patterns that diverged from
those of the other nodes through spatial pattern comparison. Con-
sequently, L4 recommended these suspicious nodes and log events
such as ‘ROCE(,hccp_service.bin):error cqe status.’. Based on
this information, SREs inspected the indicated nodes and logs, un-
covering a hardware fault in an accelerator on one of these nodes.
This fault also caused the nodes directly communicating with the
faulty node to generate relevant error logs. Following this discovery,
the SREs isolated and replaced the faulty node, restored the training
procedure, and subsequently summarized this fault pattern into the
fault library for diagnosing similar failures in the future.
Case 2: Issue Identification during Iterative Training. Accord-
ing to Finding 1, most LLM training failures occur during training

FSE Companion ’24, June 23-27, 2025, Trondheim, Norway Jiang et al.

iterations. L4 can effectively identify the failure-indicating iteration
to aid in diagnosis. For example, in Platform-X , an LLM training
job hanged after around two thousand epochs. L4 was applied to
analyze the training logs, and through temporal pattern compari-
son, L4 identified an anomalous log event sequence in one iteration.
This sequence included additional logs, such as ‘notify wait from

rank_<*> timeout’, which were present in this iteration but absent
in preceding ones. This failure-indicating information inspired SREs
to suspect a network fault, prompting them to check the network
packet loss rate for this ranked node. They found a spike during
the time frame of the anomalous iteration, confirming intermittent
network faults in the communication links, which caused timeouts
and stalled the training. Consequently, SREs isolated and repaired
the faulty network links for failure recovery, incorporating this
fault pattern into the fault library for future failure diagnosis.

These two typical cases demonstrate that L4 can effectively con-
tribute to diagnosing the majority of LLM training failures. How-
ever, there remains a small portion of cases where L4 cannot directly
pinpoint the exact root cause. For instance, in rare cases involving
logic bugs within LLM training frameworks, L4 is unable to locate
the specific faulty code. Nonetheless, in such situations, L4 can
still provide valuable diagnostic information (e.g., the failed stage)
and filter out failure-unrelated noisy logs. This process reduces the
manual effort required to analyze training logs and enhances the
diagnostic efficiency of LLM training failures for SREs.

8 DISCUSSION
8.1 Generalizability

Our study investigates 428 diverse LLM training job failures on
the Platform-X . However, we believe that the studied LLM fail-
ures are common and representative, and that the findings can be
generalized to other LLM platforms.

On the one hand, Platform-X employs widely adopted technolo-
gies and shares architectural similarities with other leading plat-
forms [41, 42, 46], which utilize similar job management mecha-
nisms. Besides, most training jobs on Platform-X involve diverse
open-source and commonly used models (e.g., LLaMA [26] and Vi-
cuna [24] series), frameworks (e.g., PyTorch [16] and Transformer [18])
and hardware, underscoring the commonality of our analysis.

On the other hand, our study avoids drawing conclusions that
are overly specific or narrowly applicable to Platform-X . In addi-
tion, reports from industry practitioners have identified similar
issues in large-scale LLM training systems. For instance, Kokolis
et al. [46] classify LLM training failures into domains such as user
programs, system software, and hardware infrastructure, aligning
closely with our observations. Similarly, Hu et al. [37] and Jiang et al.
[42] highlight the diagnostic challenges of LLM training failures
and underscore the critical role of training logs in the diagnosis pro-
cess. Our study provides a more comprehensive analysis of failure
root causes and diagnostic procedures, along with the discussion
of automation opportunities, offering actionable insights for other
LLM platforms to improve system reliability.

Regarding our proposed framework, L4, its applicability extends
beyond Platform-X and can enhance failure diagnosis efficiency
across different LLM platforms. The three key log patterns lever-
aged by L4 —cross-job, spatial, and temporal—are not specific to

Platform-X and are broadly applicable to various LLM training sce-
narios. The successful deployment of L4 on a large number of LLM
training jobs involving diverse models, frameworks, and hardware
configurations further demonstrates its generalizability.

8.2 Future Directions
LLM Training Monitoring. According to Finding 5, 10.1% of fail-
ures could not be diagnosed using the current platform’smonitoring
data and logs, indicating that existing monitoring systems for LLM
training are insufficient and could be improved. Future enhance-
ments could incorporate additional signals like training data lineage
and program profiling to offer a more holistic view of the training
process. Tracking the provenance of training data and analyzing the
performance characteristics of training programs could enhance the
platform’s monitoring capabilities, enabling earlier detection and
diagnosis of failures. Additionally, our research highlighted issues
with the quality of LLM training logs, characterized by excessive
noise and low correlation between logging levels/semantics and
failure relevance. Future work can focus on providing recommen-
dations on logging levels, locations, and contents to improve log
standardization and informativeness in LLM training frameworks,
ensuring that logged information is more closely tied to potential
failures and facilitating efficient failure diagnosis [50, 51].
Multi-modal Failure Diagnosis. Our L4 is designed to extract
failure-indicating information from extensive training logs, enhanc-
ing the efficiency of diagnosing LLM training failures. However,
analyzing logs solely cannot handle all failure types. As shown
in Sec. 3.4, 36.0% of failures require hybrid monitoring data for
accurate diagnosis. Future research could further integrate multi-
modal monitoring data, similar to cloud system failure diagno-
sis [32, 80, 90]. Combining diverse data modalities such as logs,
performance metrics, and network profiling data can provide a
comprehensive view of the training process, allowing for a more
accurate and comprehensive failure diagnosis.

9 RELATEDWORK
Model Training Failure Study. Recently, a series of studies

have focused on failures in deep learning (DL) platforms. [29] stud-
ied 360 quality issues of DL jobs, categorizing common symptoms,
root causes and fixes, while [84] focused on program failures and
reviewed current testing and debugging practices in DL platforms.
[35] presented an in-depth study on hardware faults of accelerators
in DL systems. However, as previous DL jobs differ significantly
from LLM training jobs in model sizes, architectures, training re-
sources, and software stacks [37], new research on large-scale LLM
training jobs is necessary to uncover their unique characteristics
and associated failures.

The closest related work is by [37], which examined a six-month
LLM development workload and probed discrepancies between
LLMs and prior DL workloads. However, their analysis did not
focus on training failures and diagnosis procedures. In contrast, our
work comprehensively examines failure symptoms and root causes,
as well as automated opportunities for log-based failure diagnosis,
offering valuable insights for both practitioners and researchers.

L4: Diagnosing Large-scale LLM Training Failures via Automated Log Analysis FSE Companion ’24, June 23-27, 2025, Trondheim, Norway

Log-based Failure Diagnosis. Logs are essential for ensuring
software reliability and diagnosing issues by providing critical run-
time information [20, 54, 83]. A significant body of research focuses
on diagnosing by identifying anomalous logs for further investi-
gation. For instance, [77] pioneered the application of Principal
Component Analysis (PCA) to detect system issues from console
logs based on log event frequencies. LogCluster [56] employs clus-
tering to group similar logs, thereby identifying atypical log events.
SBLD [67] applied spectrum-based techniques to transform logs
into events and identify key logs by evaluating event coverage.
Moreover, some supervised approaches, such as LogRobust[86],
leverages log semantics for more effective analysis. Recently, LLMs
have been applied to analyze log semantics, enhancing the identifi-
cation of anomalous logs with error semantics for diagnosis [59, 65].

However, as outlined in Sec. 4.1, these methods assume certain
characteristics of anomalous logs that are inapplicable to the context
of LLM training logs. In contrast, our L4 utilizes the distinct pat-
terns in LLM training logs to accurately identify failure-indicating
information. Our study can also provide guidance and opportunities
for future log-based LLM training failure diagnosis research.

10 CONCLUSION
In conclusion, this work provides the first comprehensive study

of LLM training failures on Platform-X . Our investigation reveals
diverse root causes and diagnostic challenges of these failures, with
existing log analysis methods being inadequate due to their reliance
on traditional log characteristics. We also identify three distinct
patterns (i.e., cross-job, spatial and temporal) within LLM training
logs, which inspire the design of our L4, a log-based large-scale LLM
training failure diagnosis framework. L4 significantly enhances di-
agnostic efficiency and accuracy by automatically extracting failure-
indicating information from extensive training logs. Our findings
and L4 can offer valuable information for diagnosing LLM training
failures and ensuring the reliability of LLM training systems.

REFERENCES
[1] 2022. The Technology Behind BLOOM Training. https://huggingface.co/blog/

bloom-megatron-deepspeed
[2] 2024. AI Core failure. https://www.hiascend.com/document/detail/zh/

canncommercial/80RC3/developmentguide/maintenref/troubleshooting/
troubleshooting_0004.html

[3] 2024. Amazon SageMaker. https://aws.amazon.com/sagemaker/
[4] 2024. CANN Toolkit. https://www.hiascend.com/en/software/cann
[5] 2024. Creating a child process in the fork method causes the application process

to get stuck. https://www.hiascend.com/document/detail/zh/canncommercial/
80RC3/developmentguide/maintenref/troubleshooting/troubleshooting_0075.
html

[6] 2024. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit
[7] 2024. DeepSpeed. https://www.deepspeed.ai/
[8] 2024. ECC failure. https://support.huaweicloud.com/trouble-ecs/ecs_trouble_

1626.html
[9] 2024. Failed to load checkpoint after write failure to S3 backend. https://github.

com/pulumi/pulumi/issues/2801
[10] 2024. Google Vertex AI. https://console.cloud.google.com/vertex-ai?hl=en&

inv=1&invt=Abkx0g&project=fine-effect-362306
[11] 2024. Grok-1. https://github.com/xai-org/grok-1
[12] 2024. Invalid Ranktable Configuration. https://www.hiascend.com/

document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/
troubleshooting/atlaserrorcode_15_0244.html

[13] 2024. MindSpore LLM Platform. https://xihe.mindspore.cn/en
[14] 2024. NPU network port Link failure. https://www.hiascend.com/document/

caselibrary/detail/topic_0000001792986414
[15] 2024. Ongoing research training transformer models at scale. https://github.

com/NVIDIA/Megatron-LM

[16] 2024. PyTorch. https://pytorch.org
[17] 2024. Streammode cannot be set in current driver version. https://www.hiascend.

com/document/caselibrary/detail/case_9542
[18] 2024. Transformers. https://huggingface.co/docs/transformers/en/index
[19] 2024. The wait execution of the Notify register times out. https://www.hiascend.

com/document/caselibrary/detail/case_9526
[20] Anunay Amar and Peter C Rigby. 2019. Mining historical test logs to predict bugs

and localize faults in the test logs. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 140–151.

[21] Jasmin Bogatinovski, Gjorgji Madjarov, Sasho Nedelkoski, Jorge Cardoso, and
Odej Kao. 2022. Leveraging log instructions in log-based anomaly detection. In
2022 IEEE International Conference on Services Computing (SCC). IEEE, 321–326.

[22] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[23] Zeming Chen, Qiyue Gao, and Lawrence S Moss. 2021. NeuralLog: Natural
language inference with joint neural and logical reasoning. arXiv preprint
arXiv:2105.14167 (2021).

[24] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 2023.
Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See
https://vicuna. lmsys. org (accessed 14 April 2023) 2, 3 (2023), 6.

[25] Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement provision for
scaled disagreement or partial credit. Psychological bulletin 70, 4 (1968), 213.

[26] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783 (2024).

[27] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere,
Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Mu-
rali Annavaram. 2022. {Check-N-Run}: A checkpointing system for training
deep learning recommendation models. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). 929–943.

[28] Shuzheng Gao, Xin-Cheng Wen, Cuiyun Gao, Wenxuan Wang, Hongyu Zhang,
and Michael R Lyu. 2023. What makes good in-context demonstrations for code
intelligence tasks with llms?. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 761–773.

[29] Yanjie Gao, Xiaoxiang Shi, Haoxiang Lin, Hongyu Zhang, Hao Wu, Rui Li, and
Mao Yang. 2023. An Empirical Study on Quality Issues of Deep Learning Platform.
In 2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 455–466.

[30] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Yu Wu, YK Li, et al. 2024. DeepSeek-Coder: When the
Large Language Model Meets Programming–The Rise of Code Intelligence. arXiv
preprint arXiv:2401.14196 (2024).

[31] Tanmaey Gupta, Sanjeev Krishnan, Rituraj Kumar, Abhishek Vijeev, Bhargav
Gulavani, Nipun Kwatra, Ramachandran Ramjee, and Muthian Sivathanu. 2024.
Just-In-Time Checkpointing: Low Cost Error Recovery fromDeep Learning Train-
ing Failures. In Proceedings of the Nineteenth European Conference on Computer
Systems. 1110–1125.

[32] Jingzhu He, Yuhang Lin, Xiaohui Gu, Chin-Chia Michael Yeh, and Zhongfang
Zhuang. 2022. Perfsig: extracting performance bug signatures via multi-modality
causal analysis. In Proceedings of the 44th International Conference on Software
Engineering. 1669–1680.

[33] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[34] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
computing surveys (CSUR) 54, 6 (2021), 1–37.

[35] Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nishant
Patil, and Yanjing Li. 2023. Understanding and mitigating hardware failures in
deep learning training systems. In Proceedings of the 50th Annual International
Symposium on Computer Architecture. 1–16.

[36] Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng,
Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian McAuley. 2023. Large
language models as zero-shot conversational recommenders. In Proceedings of the
32nd ACM international conference on information and knowledge management.
720–730.

[37] Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling
Chen, Peng Sun, Dahua Lin, Xiaolin Wang, Yingwei Luo, et al. 2024. Characteri-
zation of large language model development in the datacenter. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI 24). 709–729.

[38] Junjie Huang, Zhihan Jiang, Zhuangbin Chen, and Michael R Lyu. 2024. LUNAR:
Unsupervised LLM-based Log Parsing. arXiv preprint arXiv:2406.07174 (2024).

[39] Junjie Huang, Zhihan Jiang, Jinyang Liu, Yintong Huo, Jiazhen Gu, Zhuangbin
Chen, Cong Feng, Hui Dong, Zengyin Yang, and Michael R Lyu. 2024. Demystify-
ing and Extracting Fault-indicating Information from Logs for Failure Diagnosis.
In 2024 IEEE 35th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 511–522.

https://huggingface.co/blog/bloom-megatron-deepspeed
https://huggingface.co/blog/bloom-megatron-deepspeed
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/troubleshooting_0004.html
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/troubleshooting_0004.html
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/troubleshooting_0004.html
https://aws.amazon.com/sagemaker/
https://www.hiascend.com/en/software/cann
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/troubleshooting_0075.html
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/troubleshooting_0075.html
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/troubleshooting_0075.html
https://developer.nvidia.com/cuda-toolkit
https://www.deepspeed.ai/
https://support.huaweicloud.com/trouble-ecs/ecs_trouble_1626.html
https://support.huaweicloud.com/trouble-ecs/ecs_trouble_1626.html
https://github.com/pulumi/pulumi/issues/2801
https://github.com/pulumi/pulumi/issues/2801
https://console.cloud.google.com/vertex-ai?hl=en&inv=1&invt=Abkx0g&project=fine-effect-362306
https://console.cloud.google.com/vertex-ai?hl=en&inv=1&invt=Abkx0g&project=fine-effect-362306
https://github.com/xai-org/grok-1
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/atlaserrorcode_15_0244.html
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/atlaserrorcode_15_0244.html
https://www.hiascend.com/document/detail/zh/canncommercial/80RC3/developmentguide/maintenref/troubleshooting/atlaserrorcode_15_0244.html
https://xihe.mindspore.cn/en
https://www.hiascend.com/document/caselibrary/detail/topic_0000001792986414
https://www.hiascend.com/document/caselibrary/detail/topic_0000001792986414
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://pytorch.org
https://www.hiascend.com/document/caselibrary/detail/case_9542
https://www.hiascend.com/document/caselibrary/detail/case_9542
https://huggingface.co/docs/transformers/en/index
https://www.hiascend.com/document/caselibrary/detail/case_9526
https://www.hiascend.com/document/caselibrary/detail/case_9526

FSE Companion ’24, June 23-27, 2025, Trondheim, Norway Jiang et al.

[40] Junjie Huang, Jinyang Liu, Zhuangbin Chen, Zhihan Jiang, Yichen Li, Jiazhen Gu,
Cong Feng, Zengyin Yang, Yongqiang Yang, and Michael R Lyu. 2024. Faultprofit:
Hierarchical fault profiling of incident tickets in large-scale cloud systems. In
Proceedings of the 46th International Conference on Software Engineering: Software
Engineering in Practice. 392–404.

[41] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of {Large-Scale}{Multi-Tenant}{GPU}
clusters for {DNN} training workloads. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). 947–960.

[42] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al. 2024. {MegaScale}:
Scaling Large Language Model Training to More Than 10,000 {GPUs}. In 21st
USENIX Symposium on Networked Systems Design and Implementation (NSDI 24).
745–760.

[43] Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li, Junjie Huang, Yintong
Huo, Pinjia He, Jiazhen Gu, and Michael R Lyu. 2024. Lilac: Log parsing using
llms with adaptive parsing cache. Proceedings of the ACM on Software Engineering
1, FSE (2024), 137–160.

[44] Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu,
Zhuangbin Chen, Jieming Zhu, andMichael R Lyu. 2024. A Large-Scale Evaluation
for Log Parsing Techniques: How Far Are We?. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis.

[45] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[46] Apostolos Kokolis, Michael Kuchnik, John Hoffman, Adithya Kumar, Parth
Malani, Faye Ma, Zachary DeVito, Shubho Sengupta, Kalyan Saladi, and Carole-
Jean Wu. 2024. Revisiting Reliability in Large-Scale Machine Learning Research
Clusters. arXiv preprint arXiv:2410.21680 (2024).

[47] Van-Hoang Le and Hongyu Zhang. 2022. Log-based anomaly detection with
deep learning: How far are we?. In Proceedings of the 44th international conference
on software engineering. 1356–1367.

[48] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin, and Tao
Xie. 2013. A characteristic study on failures of production distributed data-parallel
programs. In 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 963–972.

[49] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu. 2020. Swiss-
Log: Robust and Unified Deep Learning Based Log Anomaly Detection for Diverse
Faults. In Proceedings of the31st International Symposium on Software Reliability
Engineering. 92–103.

[50] Yichen Li, Yintong Huo, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, and
Michael R Lyu. 2023. Exploring the effectiveness of llms in automated logging
generation: An empirical study. arXiv preprint arXiv:2307.05950 (2023).

[51] Yichen Li, Yintong Huo, Renyi Zhong, Zhihan Jiang, Jinyang Liu, Junjie Huang,
Jiazhen Gu, Pinjia He, andMichael R Lyu. 2024. Go Static: Contextualized Logging
Statement Generation. arXiv preprint arXiv:2402.12958 (2024).

[52] Yichen Li, Yulun Wu, Jinyang Liu, Zhihan Jiang, Zhuangbin Chen, Guangba Yu,
and Michael Lyu. 2025. COCA: Generative Root Cause Analysis for Distributed
Systems with Code Knowledge. In 2025 IEEE/ACM 47th International Conference
on Software Engineering (ICSE). IEEE Computer Society, 770–770.

[53] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and Yuxing
Hu. 2021. Ascend: a scalable and unified architecture for ubiquitous deep neural
network computing: Industry track paper. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 789–801.

[54] Fred Lin, Keyur Muzumdar, Nikolay Pavlovich Laptev, Mihai-Valentin Curelea,
Seunghak Lee, and Sriram Sankar. 2020. Fast dimensional analysis for root cause
investigation in a large-scale service environment. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 4, 2 (2020), 1–23.

[55] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion.
102–111.

[56] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion.
102–111.

[57] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[58] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman Nath. 2019. What bugs
cause production cloud incidents?. In Proceedings of the Workshop on Hot Topics
in Operating Systems. 155–162.

[59] Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin
Chen, Cong Feng, Minzhi Yan, andMichael R Lyu. 2023. Scalable and adaptive log-
based anomaly detection with expert in the loop. arXiv preprint arXiv:2306.05032
(2023).

[60] Jinyang Liu, Zhihan Jiang, Jiazhen Gu, Junjie Huang, Zhuangbin Chen, Cong
Feng, Zengyin Yang, Yongqiang Yang, and Michael R Lyu. 2023. Prism: Revealing
hidden functional clusters from massive instances in cloud systems. In 2023 38th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 268–280.

[61] Jian-Guang Lou, Qiang Fu, Shenqi Yang, Ye Xu, and Jiang Li. 2010. Mining
invariants from console logs for system problem detection. In 2010 USENIX
Annual Technical Conference (USENIX ATC 10).

[62] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al. 2019. Loganomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs.. In IJCAI,
Vol. 19. 4739–4745.

[63] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021. CheckFreq:
Frequent, Fine-Grained DNN Checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21). 203–216.

[64] Meinard Müller. 2007. Dynamic time warping. Information retrieval for music
and motion (2007), 69–84.

[65] Jonathan Pan, Swee Liang Wong, and Yidi Yuan. 2023. RAGLog: Log Anomaly
Detection using Retrieval Augmented Generation. arXiv preprint arXiv:2311.05261
(2023).

[66] Friedrich Pukelsheim. 1994. The three sigma rule. The American Statistician 48, 2
(1994), 88–91.

[67] Carl Martin Rosenberg and Leon Moonen. 2020. Spectrum-based log diagnosis. In
Proceedings of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–12.

[68] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s open-source deep-
learning toolkit. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining. 2135–2135.

[69] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[70] Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech, Sudhar-
shan Vazhkudai, Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe
Navaux, et al. 2015. Understanding GPU errors on large-scale HPC systems and
the implications for system design and operation. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 331–342.

[71] Longyue Wang, Chenyang Lyu, Tianbo Ji, Zhirui Zhang, Dian Yu, Shuming Shi,
and Zhaopeng Tu. 2023. Document-level machine translation with large language
models. arXiv preprint arXiv:2304.02210 (2023).

[72] Tao Wang, Qingxin Xu, Xiaoning Chang, Wensheng Dou, Jiaxin Zhu, Jinhui Xie,
Yuetang Deng, Jianbo Yang, Jiaheng Yang, JunWei, et al. 2022. Characterizing and
detecting bugs in WeChat mini-programs. In Proceedings of the 44th International
Conference on Software Engineering. 363–375.

[73] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, TS Eugene Ng,
and YidaWang. 2023. Gemini: Fast failure recovery in distributed training with in-
memory checkpoints. In Proceedings of the 29th Symposium on Operating Systems
Principles. 364–381.

[74] Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams,
Anton Alexandrov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams,
Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy
Liang, Christopher Ré, Irina Rish, and Ce Zhang. 2024. RedPajama: an Open
Dataset for Training Large Language Models. NeurIPS Datasets and Benchmarks
Track (2024).

[75] Baodong Wu, Lei Xia, Qingping Li, Kangyu Li, Xu Chen, Yongqiang Guo, Tieyao
Xiang, Yuheng Chen, and Shigang Li. 2023. Transom: An efficient fault-tolerant
system for training llms. arXiv preprint arXiv:2310.10046 (2023).

[76] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009.
Largescale system problem detection by mining console logs. In Proceedings of
SOSP, Vol. 9. Citeseer, 1–17.

[77] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles (SOSP).
117–132.

[78] Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming
Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the power of llms
in practice: A survey on chatgpt and beyond. ACM Transactions on Knowledge
Discovery from Data 18, 6 (2024), 1–32.

[79] Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. 2024.
A Survey on Recent Advances in LLM-Based Multi-turn Dialogue Systems. arXiv
preprint arXiv:2402.18013 (2024).

[80] Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin
Zheng. 2023. Nezha: Interpretable Fine-Grained Root Causes Analysis for Mi-
croservices on Multi-modal Observability Data. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. 553–565.

[81] Guangba Yu, Gou Tan, Haojia Huang, Zhenyu Zhang, Pengfei Chen, Roberto
Natella, and Zibin Zheng. 2024. A Survey on Failure Analysis and Fault Injection
in AI Systems. arXiv:2407.00125 [cs.SE] https://arxiv.org/abs/2407.00125

[82] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee, Xiaoming
Tang, Yuanyuan Zhou, and Stefan Savage. 2012. Be conservative: Enhancing
failure diagnosis with proactive logging. In 10th USENIX Symposium on Operating

https://arxiv.org/abs/2407.00125
https://arxiv.org/abs/2407.00125

L4: Diagnosing Large-scale LLM Training Failures via Automated Log Analysis FSE Companion ’24, June 23-27, 2025, Trondheim, Norway

Systems Design and Implementation (OSDI 12). 293–306.
[83] Wei Yuan, Shan Lu, Hailong Sun, and Xudong Liu. 2020. How are distributed bugs

diagnosed and fixed through system logs? Information and Software Technology
119 (2020), 106234.

[84] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An empirical study on program failures of deep learning jobs. In Proceedings
of the ACM/IEEE 42nd international conference on software engineering. 1159–1170.

[85] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2023.
Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.
org/abs/2205.01068 3 (2023), 19–0.

[86] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
joint meeting on European software engineering conference and symposium on the
foundations of software engineering. 807–817.

[87] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun Li,
Yingnong Dang, Qingwei Lin, et al. 2021. Onion: identifying incident-indicating
logs for cloud systems. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1253–1263.

[88] Yuchen Zhong, Guangming Sheng, Juncheng Liu, Jinhui Yuan, and Chuan Wu.
2023. Swift: Expedited Failure Recovery for Large-Scale DNN Training. In Pro-
ceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming. 447–449.

[89] Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Haibo Lin, Haoxiang Lin, and
Tingting Qin. 2015. An empirical study on quality issues of production big
data platform. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Vol. 2. IEEE, 17–26.

[90] Zhouruixing Zhu, Cheryl Lee, Xiaoying Tang, and Pinjia He. 2024. HeMiRCA:
Fine-Grained Root Cause Analysis for Microservices with Heterogeneous Data
Sources. ACM Transactions on Software Engineering and Methodology (2024).

	Abstract
	1 introduction
	2 Background
	2.1 LLM Development Platform-X
	2.2 LLM Training Failure Management

	3 LLM Training Failure Study
	3.1 Study Design
	3.2 RQ1: Failure Symptoms
	3.3 RQ2: Failure Root Causes
	3.4 RQ3: Data Sources of Failure Diagnosis

	4 Automation Opportunities
	4.1 Limitation of Existing Approaches
	4.2 Distinct Patterns of LLM Training Logs

	5 Our Framework: nm
	5.1 Log Preprocessing
	5.2 Cross-job Filtering
	5.3 Spatial and Temporal Pattern Comparison
	5.4 Fault Pattern Confirmation

	6 Evaluation
	6.1 Experiment Designs
	6.2 Experiments Results

	7 Deployment Experience
	8 Discussion
	8.1 Generalizability
	8.2 Future Directions

	9 Related Work
	10 Conclusion
	References

