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Abstract—High-quality logging is critical for the reliability of
cloud services, yet the industrial process for improving it is
typically manual, reactive, and unscalable. Existing automated
tools inherit this reactive nature, failing to answer the crucial
whether-to-log question and are constrained to simple logging
statement insertion, thus addressing only a fraction of the real-
world logging improvement.

To address these gaps and cope with logging debt in large-scale
codebases, we propose LOGIMPROVER, a framework powered
by Large Language Models (LLMs) that automates proactive
logging quality improvement. LOGIMPROVER introduces two
paradigm shifts: from reactive generation to proactive discovery,
and from simple insertion to holistic logging patch generation.
First, it identifies potential logging gaps based on principles
distilled from industrial best practices. Then, it grounds each
candidate through a cascading, structure-aware RAG module.
Next, it prunes false positives by analyzing call-stack logging re-
sponsibilities and implicit logger inheritance. Finally, it generates
holistic and explainable logging patches that reflect real-world
development practices.

Our evaluation provides dual confirmation of its effectiveness:
LOGIMPROVER significantly outperforms state-of-the-art base-
lines in closed-world experiments and achieves 68.12% developer
acceptance rate in its real-world deployment. This success demon-
strates the practical value of automating the entire logging quality
improvement lifecycle, from discovery to recommendation.

Index Terms—Logging Debt; Observability; Code Generation.

I. INTRODUCTION

Reliability is essential for cloud services, as it ensures
consistent availability and expected performance, thereby pre-
venting revenue loss and maintaining user trust [1]]. Observ-
ability, which refers to the ability to monitor and understand
a system’s internal states through the runtime data, such as
logs, traces and metrics, plays a vital role in maintaining the
reliability. Logs, in particular, are often the primary resource
for on-call engineers to diagnose and resolve production
issues [2l], [30, [4), [SM, [6], making the quality of logging
instrumentation a cornerstone of system maintainability.

Despite its importance, the process of improving logging
quality is often inefficient and unscalable. The typical indus-
trial process is manual, meeting-driven, and fundamentally
reactive. Developers, Site Reliability Engineers (SREs), and
other teams engage in regular meetings for post-incident
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reviews and best practice discussions to identify logging gaps.
This manual-first approach cannot keep pace with the rapid
evolution of large-scale codebases, creating a clear need for
automated solutions to systematically address what we term
logging debt [1].

While the need for a proactive solution is clear, existing
academic studies for suggesting where-to-log (7], (8] or what-
to-log [9], [10], [11] are fundamentally reactive; they require a
developer to first select a specific method to improve. Simply
applying these tools across an entire codebase is not practical.
This is because observability is not a free lunch: every added
logging statement incurs more I/O, storage, and computational
costs [12], [13], [14]. The cost of logging indicates that
an automated tool cannot simply insert logging statement
everywhere. It must be both precise in identifying where a
new logging statement is needed and holistic in its ability to
improve existing logs. This reality exposes two fundamental
limitations in existing tools.

The first limitation stems from the reactive design of current
tools. This is particularly problematic given the sparse nature
of logging, where our analysis reveals that only 14.0% of
methods contain a logging statement (detailed in Section [[I-C).
Because these models are designed to generate a logging
statement, they are inherently biased towards insertion and
lack the pruning mechanisms for proactive discovery. This
observation motivates our first paradigm shift: from reactive
generation to proactive discovery.

The second limitation is the narrow scope of existing tools,
which focus exclusively on inserting new logging statements.
This focus is misaligned with how developers improve logging
quality in practice. Our study found that insertion accounts
for only 44.1% of logging-related code changes (detailed in
Section [II-C). By modeling only insertion, current tools fail
to learn from the patterns embedded in real-world logging
improvements, which prevents them from generating practical
suggestions. This finding motivates our second paradigm
shift: from insertion to holistic logging patch generation.

To address these limitations, we propose LOGIMPROVER, an
automated proactive logging quality improvement framework
powered by Large Language Models (LLMs). LOGIMPROVER
realizes our two paradigm shifts through a multi-stage pipeline
that mirrors the reasoning of an expert SRE. The pipeline
begins with a best-practice-driven scan to proactively detect



potential logging missing, directly tackling the whether-to-log
question at scale. Next, a structure-aware RAG module con-
textualizes each identified candidate. LOGIMPROVER retrieves
similar cases from constructed knowledge base containing
post-incident fixes and industrial show house repositories.
These examples demonstrate the silent practice beyond written
rules Finally, a pruning agent refines the results by analyzing
call stack logging responsibility and implicit logger inheri-
tance. This step filters out false positives, such as cases where
logging is already handled outside the method. The final output
is a set of explainable, multi-line logging patches.

Our evaluation provides dual confirmation of its effec-
tiveness. In closed-world experiments, LOGIMPROVER sig-
nificantly outperforms state-of-the-art baselines across all
tasks. More critically, its industrial deployment at ByteDance
achieved a developer acceptance rate of 68.12%. Ultimately,
LOGIMPROVER inverts the traditional mode by automating the
entire process from discovery to recommendation, answering
the two fundamental questions: (i) whether and where a
logging improvement is needed, and (ii) what specific, high-
quality, and convincing recommendation should be provided.

In summary, our key contributions are:

o Novelty: We are the first to shift logging automation
from reactive, single-action insertion to proactive, holistic
logging patch generation.

o Industrial Practice Study: We present an in-depth study
of logging quality improvement in a industrial sce-
nario, sharing real-world deployment experiences, lessons
learned and insights.

« Methodology: We design and build LOGIMPROVER, an
end-to-end LLM-powered framework with a four-stage
pipeline, integrating proactive scanning with context-
aware retrieval from knowledge bases to generate explain-
able, high-quality logging patches.

« Evaluation: We demonstrate the superiority and practi-
cal value of LOGIMPROVER through evaluation in both
closed-world and real-world environments. Our results
show state-of-the-art performance and achieve 68.12%
developer acceptance rate in real-world deployment.

II. INDUSTRIAL LOGGING QUALITY IMPROVEMENT:
EXPERIENCE & REQUIREMENT

To motivate our work, we first illustrate the severe con-
sequences of inadequate logging through a real-world indus-
trial incident. We then analyze the limitations of the current
manual, reactive processes for improving logging quality.
Finally, we present an empirical study of logging practices
at ByteDance to demonstrate practical requirements for an
automated logging quality improvement tool.

A. The Cost of Insufficient Logging: A Motivating Case

We present a real-world incident from the service discovery
component of our internal system X to illustrate how insuf-
ficient logging can lead to significant operational costs. The
system uses a centralized aggregator for multi-cluster service
discovery. As described in Figure a central Aggregator

for _, k8sClient := range a.clusterClients {
@ services, err := k8sClient.FetchServices()
if err != nil {
+ logger.WithFields(logrus.Fields{
Kubernetes o+ "cluster_name": k8sClient.Name,
Cluster [ |+ "error": ert,
Quer I R |1+ }).Error(“Failed to fetch services from...
uery ) esPonse/ continue
}
Central / Logeing Logic
Aggregator v gging Logi
1 \ INFO: Starting multi-cluster service aggregation cycle.
Incomplete | | [mvFo: successtully fetched 120 services from cluster-2.
List \| * Error: Failed to fetch services from a cluster,
4 skipping. The service list is incomplete.
- cluster_name=xx, error="context deadline exceeded"
D|5C0Yefy INFO: Aggregation cycle complete. Pushing 120 services
Service to Discovery Service.

Runtime Logs

Fig. 1: The cost of missing logging statement.

queries all Kubernetes clusters and merges their responses
into a list. This list is then cached by a Discovery Service,
which acts as the source of truth for the system. The system
relies on one key assumption: if a service is missing from
the aggregator’s list, it is considered deleted. Therefore, the
completeness of the aggregator’s data is important.

The incident began with a routine resource scaling oper-
ation, which caused a brief communication failure between
the aggregator and one of the Kubernetes clusters. Although
the aggregator caught the error, it did not log any warning
or message. Instead, it silently skipped the failed cluster and
continued processing. This missing log made the failure com-
pletely invisible to engineers and monitoring tools. From the
outside, the aggregator appeared to be functioning normally,
making it extremely difficult to detect that a cluster had
been skipped. The aggregator then returned an incomplete
list of services to the discovery service. Following its logic,
the discovery service assumed the missing services had been
intentionally deleted. This led to a system-wide outage: the
system X could no longer find or connect to those services,
even though they were still running. This incident highlights
how the absence of even a single log entry can obscure critical
failures and delay root cause analysis [13].

Motivation 1: Insufficient logging leads to silent failures,
which can convert minor issues into costly, system-wide
outages, underscoring the critical need for automated methods
to improve logging debt.

B. The Manual Logging Improvement Process

While the importance of logging quality is acknowledged,
and the diffusion of responsibilities among roles impedes
logging quality governance, often leading to observability
initiatives being de-prioritized across most services. This sit-
uation highlights the need for a fundamental shift in the
improvement strategy.

As shown in Figure 2| the current industrial process for
improving observability is highly dependent on manual efforts,
typically organized through recurring review meetings by the
reliability team (i.e., SRESs). This process involves a complex
interaction between multiple roles. Specifically, developers are
responsible for implementing concrete logging code during
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ity improvement.

+ logs.Logger.WithFields(logrus.Fields{"object_type": fmt.Sprintf("%T",
obj)}).Errorf("failed to get object GVK: %v", err)

(a) Example of logging statement insertion.

if err = nil {

- logger.Errorf(err)

+ loggerWithFields(logrus.Fields{"resource": resource.Name,
"namespace": getObjNamespace(obj)}).Errorf(err)...

(b) Example of logging statement modification.

- return nil, err
+ return nil, fmt.Errorf(“failed to get modified configuration for %s:
%w", info.Name, err) — = = Thrown for logging

(c) Example of logging variable enhancement.

Fig. 3: Logging quality improvement examples.

development. The testing team is then tasked with verifying
the accuracy and stability of these outcomes; however, unlike
functional testing which can yield precise results, this often
involves a high-level manual review and subjective advice.
Subsequently, SREs drive improvements from a reactive stand-
point. After handling cloud incidents [1]], [16], they review the
root cause, evaluate metrics like Time to Detect (TTD) and
Time to Resolve (TTR) [1l], and provide direct insights into
missing observability points through post-incident reports.

However, this manual, meeting-driven approach proves to be
inefficient and unscalable for vast and evolving codebases. The
high coordination overhead required for cross-team reviews
makes manual governance impractical. As a result, the process
becomes reactive in practice. This reveals the limitation: writ-
ten best practices lack real contextualized knowledge. There-
fore, there is an urgent need for an automated solution capable
of mining the silent practices: the patterns learned from the
reviewed codebase and incident-driven improvements.

Motivation 2: Current logging improvement relies on a
manual, unscalable and reactive process. A proactive, auto-
mated practice-following approach is required to systemati-
cally address logging debt.

C. An Empirical Study of Industrial Logging Practices

To ground our research in real-world challenges, we con-
ducted an empirical study of four large-scale industrial systems

at ByteDance (anonymized as System-A, B, C, and D). As
detailed in Table [l these are mature, global-facing cloud
services built on a collective 3.8M lines of Go code. We
specifically selected these systems because their logging prac-
tices are considered a benchmark for quality and reliability.
Having undergone years of evolution in a live production
environment, their logs have been continuously refined to
effectively meet the demanding requirements of operational
analysis, troubleshooting, and system monitoring.

Our analysis relies on data gathered from two sources: the
current state of the source code and its historical evolution.
To analyze the code’s structure, we used our internal Go
static analyzer to parse the 3.8M lines of code. The analyzer
systematically constructed an Abstract Syntax Tree (AST)
to identify all method declarations and, within each method
body, detected invocations to logging libraries. To analyze
how developers improve logging, we mined the complete Git
commit history for each system. We identified logging-related
commits by programmatically analyzing the diff of each
change, isolating those that specifically added or modified lines
containing logging statements. We then filtered out commits
that also contained functional code changes using an LLM,
thereby isolating commits that represent pure logging quality
improvements. This comprehensive data allowed us to observe
two essential gaps in logging strategies that limit existing tools
and motivate our research.

Logging is Sparse. Our first finding is that logging state-
ments are sparsely distributed. As Table [[] shows, across all
methods in our dataset, only 14.0% contain logging statements.
This sparsity is a direct consequence of Go’s idiomatic error
handling. Since errors (i.e., err in Go language) are treated
as first-class values [[17], a common and accepted practice
is for developers to propagate them up the call stack, often
enhancing them with more context, rather than logging them
immediately at their point of origin. This practice makes it
extremely challenging for any automated tool to proactively
determine where a log statement is truly required.

Diverse Logging Improvement Patterns. Our second
finding, derived from analyzing logging improvement com-
mits distribution, reveals that real-world improvement are not
monolithic. As Table E] shows, insertion of new log statements
accounted for only 44.1% of these changes. As shown in
Figure[3] the logging quality improvement patterns are diverse.
The majority of developer effort was invested in more nuanced
tasks: modification of existing logs (e.g., adding contextual
key-value pairs, as shown in Figure and error enhancement
(e.g., improving variable propagation wrapping, as shown in
Figure [3c). This finding highlights a critical gap: existing
automated tools, with their narrow focus on insertion, fail to
address the majority of real-world logging improvement needs.

Our empirical findings highlight a fundamental disconnect
with existing automated tools, proposing practical require-
ments for new paradigms:



TABLE I: A Summary of the Logging Practice of Studied Systems

) seIng " Insertion Modification  Variable Enhancement
System-A  2.6M 6,163 31,486 3,180 41.5 6.9 51.6
System-B 43k 386 1,262 149 38.7 34 57.0
System-C 314k 830 2,984 387 33.0 3.5 63.5
System-D 845k 5,824 10,509 2,738 49.0 9.1 41.9
Total 3.8M 13203 46241 6454 44.1 7.5 48.4

Practical Requirement: An effective solution must re-
place the current manual process (Section with an
automated approach driven by contextualized practices
learned from the codebase. This approach must be (i)
Precise in order to address the sparse nature of logging
(Section and prevent costly silent failures (Sec-
tion [[I-A); (ii) Holistic, moving beyond insertion to gen-
erate comprehensive logging patches (Section [[I-C), thus
helping developers improve logging quality in practice.

III. METHODOLOGY
A. Overview

To address the challenges laid out in our empirical study,
we propose LOGIMPROVER, a framework that embodies our
two paradigm shifts. Our methodology is explicitly designed to
overcome the two fundamental limitations of prior automated
tools: their inability to answer the whether-to-log question and
their narrow focus on logging statement insertion.

As illustrated in Figure d] the pipeline begins with Proactive
Candidate Identification, which scans the entire codebase
against best practices to find all potential improvement can-
didates with high recall. These candidates then enter the
Cascading Contextualized Refinement stage, where they are
enriched with contextual knowledge from positive and neg-
ative knowledge base to improve precision. Subsequently,
the Inheritance-Aware False Positive Pruning stage employs
a specialized agent to analyze the service’s custom logger
infrastructure, pruning suggestions that are redundant due to
implicit logging behavior inherited from wrappers or base
classes. In the final stage, Holistic Logging Patch Generation,
LOGIMPROVER synthesizes all gathered evidence to generate
a holistic and concrete faceted logging patch and a detailed,
evidence-based explanation.

B. Stage 1: Proactive Candidate Identification

A fundamental limitation of previous works [10], [18], [9] is
its reactive nature, which sidesteps the critical whether-to-log
question. LOGIMPROVER inverts this paradigm by initiating a
proactive screening process. At its core, this stage uses a set of
codified best practices [19], [20], which are distilled from the
collective experience of expert SREs and post-incident reviews
by years, to identify potential logging gaps.

The primary objective of this stage is to act as a power-
ful focusing mechanism. Large-scale codebases contain vast
amounts of boilerplate code where logging is unnecessary [7]].
To avoid the cost of deeply analyzing every method, we

leverage a comprehensive set of industrial best practices. As
shown in Figure[5] each principle within these practices targets
a specific type of critical operation, such as data access. To
ensure high recall, these principles are translated into lenient,
syntax-based patterns. For example, the pattern for Principle
1 flags any unlogged error block following a function call
with data-access substrings (e.g.,, DataBase, Cache). This
strategy allows LOGIMPROVER to efficiently pinpoint methods
that perform critical operations while filtering out irrelevant
code, ensuring that all candidates with high potential are
identified for subsequent stages.

LOGIMPROVER applies this screening process across two
scopes: scanning entire legacy repositories to address ac-
cumulated logging debt, and incrementally analyzing new
merge requests to prevent new gaps. The resulting high-recall,
focused set of candidates is then passed to the subsequent
stages for further contextualized refinement and false positive
pruning.

C. Stage 2: Cascading Contextualized Refinement

While Stage 1 excels at recall, its reliance on generalized
patterns inevitably introduces a significant number of logging
noises. Presenting developers with generic suggestions (e.g.,
Please log errors) would hurt trust, as abstract prin-
ciples are often difficult to apply correctly and are easy to
dismiss. To convince developers to act, we must move from
the abstract to the concrete. This means substantiating every
potential violation with evidence: a concrete, peer-validated
code change from a similar context. Therefore, the goal of
this stage is to shift from rule-based flagging to evidence-
based refinement. By finding the most contextually similar
cases for each candidate, we ground our suggestions in the
existing “’silent practices” of the organization’s own codebase.

To bridge this gap, LOGIMPROVER grounds its recom-
mendations by constructing and leveraging two continuously
evolving method-level knowledge bases:

o The Positive Knowledge Base (K,,,,) serves as a collec-
tion of validated, high-quality logging implementations
in a specific code change or method, sourced from:
(i) Post-incident patches, which capture proven logging
quality fixes for real-world incidents for better diag-
nosis; (ii) “Show House” repositories, which represent
mature codebases reviewered by experts that serve as
the gold standard; and (iii) Accepted recommendations
from LOGIMPROVER itself, creating a powerful self-
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Candidate Identification

Principle 1 (Data Access Failure): Failures to access a primary
data source (e.g., database) require an ERROR log, while failures
for a recoverable source (e.g., cache) require a WARN log.

Principle 2 (Asynchronous Failure): Errors within asynchronous
tasks (e.g., goroutines) must be logged to prevent silent failures
and inconsistent system states.

Fig. 5: The internal best practice example for logging instru-
mentation.

reinforcing learning loop by taking real-world deploy-
ment feedbacks.

The Negative Knowledge Base (k,.4) is populated
with explicitly rejected recommendations. This provides
an unambiguous signal that prevents the system from
repeating suggestions that developers have found to be
irrelevant or incorrect.

Crucially, every entry in these knowledge bases is linked to
its source in the repository. This ensures that each candidate
can be traced back to retrieve contextualized information,
such as its callers and callees, for the following process.
Furthermore, each entry is a method-level artifact that pairs
the contextualized code change with its textual data, such as
a post-incident review explaining its diagnostic value.

However, effectively retrieving the most relevant examples
from large-scale codebases poses a significant challenge. Sim-
ple lexical or semantic similarity is insufficient[211], [22], [23],
as two methods can have similar text and function while
operating in vastly different architectural contexts. To over-
come this, LOGIMPROVER employs a Cascading Contextual-
ized Refinement pipeline: a multi-stage Retrieval-Augmented
Generation (RAG) [24] strategy designed to balance efficiency
and contextualized precision.

1) Phase 1: Lexical Filtering. This initial phase acts as a
high-speed, coarse-grained filter. It uses sparse retrieval
methods (i.e., BM25 [25]) to rapidly scan the knowledge
bases, reducing the search space from potentially mil-

Stage 3: Inheritance-Aware
False Positive Pruning

of LOGIMPROVER.

lions of entries to a few hundred candidates that share
significant identifier overlap with the target method.
Phase 2: Semantic Re-ranking. The candidates from
Phase 1 are then re-ranked using dense retrieval. By com-
puting embeddings with a fine-tuned model, this phase
moves beyond keyword matching to identify precedents
with a similar functional intent, re-ordering the candidates
based on their semantic relevance.

Phase 3: Dependency-Aware Contextual Re-ranking.
This final, crucial phase ensures true contextualized sim-
ilarity. Recognizing that even semantically similar meth-
ods can be inappropriate due to differing contexts, we
employ an LLM to perform a structural comparison. For
the top candidates, we construct local call graphs for both
the candidate and the retrieved examples. The LLM is
prompted to assess the structural isomorphism of these
graphs, considering upstream callers, downstream callees,
and error-handling logic. A high score is assigned only
when a contextual match is found.

2)

3)

This cascading process ensures that the final selected prece-
dent is not just functionally similar but contextualized similarly
to the candidate method. This match is the cornerstone of
LOGIMPROVER’s ability to generate a trustworthy recommen-
dation, coupled with concrete, approved cases drawn from
post-incident patches, mature and reviewed repositories, or
previously accepted suggestions.

D. Stage 3: Inheritance-Aware False Positive Pruning

The candidates refined in Stage 2, while contextually rele-
vant, can still be incorrect due to sophisticated logging patterns
in practice. The primary aim of this stage is to prune these
remaining false positives by analyzing the candidate from two
distinct perspectives: its logging responsibility within the call
stack and the implicit pattern of its logging framework.

The first source of false positives arises from the division of
logging responsibility across the call stack [7]. In practice, as
illustrated in Figure [6a] if a caller function is responsible for



type Baselogger struct {...}
func (I *BaseLogger) Error(msg string, fields ...) {
fields["trace_id"] = getTracelDFromCxt(ctx)

}

~

func databaseQuery() error {
dbErr := errors.New("record not found")
return fmt.Errorf("querying data%w", dbErr)

type ServiceLogger struct {
logging.BaselLogger
serviceName string

I}
1
1
\

»

~

\ func processRequest() {
4 err := databaseQuery()

e

func handleRequest(ctx context.Context) {

if err 1=nil { logger := services.NewLogger("order")
logger.Error("request failed: %v", err) if err := processOrder(); err != nil {

} logger.Error(ctx, “xxx"“...)

(a) An example of logging re- (b) An example of logger inheri-
sponsibility. tance.
Fig. 6: Two noise-introducing logging patterns.

logging an error, the callee could only enhance the logger vari-
able (e.g., via fmt.Errorf("...: err)) rather
than generating another statement. Therefore, LOGIMPROVER
prunes candidates where an upstream function in the call stack
already provides adequate logging for the same error path
according to the corresponding logging boundaries.

The second source of false positives comes from modern
logging frameworks that automatically enrich log entries with
contextual data (i.e., ctx in Go language). As illustrated in
Figure [6bl a specialized logger is configured automatically
inject fields like t race_id into every inheritanced logger. A
model that only observes the call to logger.Error(...)
will fail to see this implicit behavior and will incorrectly
suggest adding the trace_id, introducing the noise.

To address this, we introduce the Log Config Agent,
a hybrid component that surpasses the precision limitations
of traditional static analysis by combining it with LLM-
driven refinement. While static analysis has been explored
for logging [[10]], it can struggle with dependency injection
or reflection, leading to inaccuracies. Our agent overcomes
this by combing it with semantics understanding capability of
LLM.

First, the agent performs a static tracing process, starting
from the logger instance in the candidate method. It follows all
possible inheritance and composition chains to identify every
inheritance path. This initial step is designed for high recall,
ensuring no potential inheritance path is missed.

However, static analysis alone cannot definitively validate
these paths. Therefore, the agent sends the discovered paths
to an LLM for refinement. The input to the LLM consists of
the full inheritance paths along with the source code for each
class or struct in those paths. The LLM analyzes the provided
code to determine which of the paths are actually viable and
what fields (e.g., trace_id) are implicitly added. The final
output is a validated profile of the logger’s automatic behavior.

By creating this definitive profile, this two-fold pruning
strategy ensures that the final recommendations are not only
contextually relevant but also aware of both repo-level logging
conventions and framework-level implicit behavior.

o "
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E. Stage 4: Holistic Logging Patch Generation

This final stage synthesizes all the gathered evidence into
a concrete, actionable logging patch. It directly fulfills our

second paradigm shift, moving from simple insertion to diverse
logging improvement patterns a s we detailed in Section [[I-C|

As demonstrated by our findings in Figure [3] and Table [I}
real-world logging requires a mix of insertion, modification,
and variable enhancement. To mirror this reality, we define a
corresponding action space. The model’s decision of which
action to take is not based on a simple rule, but on a holistic
synthesis of the knowledge gained throughout the pipeline.
This knowledge integrates the specific best practice violated
from Stage 1 with the most contextually similar cases retrieved
in Stage 2, including its source code, rationale, and call graph
analysis. It is then informed by the final validity checks
from Stage 3, which confirm both the call stack’s logging
responsibility and the logger’s implicit behavior.

Based on this informed decision, the LLM generates a con-
crete logging patch and a corresponding explanation, falling
into one of the three categories of our action space:

« Logging Statement Insertion: Suggests the insertion of
new logging statements into critical code paths, as shown
in Figure [3a

« Logging Statement Modification: Refines existing log-
ging statements to improve their quality. This in-
cludes adding more contextual key-value pairs (e.g., via
log.withFields), as shown in Figure [3b]

o Logging Variable Enhancement: Improves variable
propagation wrapping. Instead of returning raw variables,
LOGIMPROVER suggests wrapping them with opera-
tional details (e.g., using fmt .Errorf ("...:
err)), as shown in Figure

Furthermore, the effectiveness of this entire process relies on
its ability to continuously learn and adapt. Developer feedback
directly updates the positive (kK,,;) and negative (K,¢q)
knowledge bases for immediate use in RAG. Over time, as
feedback accumulates, we will further employ alignment tech-
niques, such as Direct Preference Optimization (DPO) [26],
to tune the LLMs so that they can better internalize the
real preferences of developers. This multi-tiered learning loop
ensures that LOGIMPROVER remains responsive to immediate
needs while continuously evolving its understanding of log-
ging practices.

o) Al
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IV. EXPERIMENT SETUP

Our evaluation is divided into (i) a controlled, closed-world
experiment to precisely measure performance against existing
baselines, and (i) a real-world deployment study to evaluate
practical utility and developer acceptance in the wild.

Our evaluation is guided by the following RQs:

« RQ1: How effective is LOGIMPROVER at logging quality
improvement?

« RQ2: How do the different phases affect the effectiveness
of LOGIMPROVER?

A. Dataset

Our evaluation dataset is derived from a comprehensive
snapshot of 10 mature, actively-maintained cloud services
within the company with their corresponding repositories. To



ensure high data quality and minimize potential noise, we first

applied a series of filtering rules:

o« We removed duplicate files and code generated automat-
ically by frameworks (e.g., Thrift[27]-generated files) to
reduce noise in the dataset.

« Files containing non-English logs were excluded to maintain
language consistency.

o We selected mature repositories that are still maintained and
have been running online for more than one year.

This rigorous process yielded a high-quality dataset of
20,525 non-auto-generated Go methods, which serve as the
foundation for our experiments. Both the retrieval and tuning-
based components of our baselines use them as training set.
From this foundation, we constructed the ground-truth test sets
for our three logging improvement tasks as follows:

For the logging statement insertion task, we created a large-
scale test set by systematically removing all 7,703 existing
logging statements from the codebase, following the prior
works [28]], [10], [[11]. This process is straightforward and
provides a substantial dataset where the model’s task is to
correctly predict the removed statements.

For the logging statement modification and logging variable
enhancement tasks, constructing the ground truth is far more
challenging, as it requires identifying real improvements from
historical data. Simple removal is not an option. Instead, we
reuse the mining process in Section This comprehensive
process yielded a smaller but highly valuable and realistic set
of ground truths: 153 confirmed logging modification changes
and 848 confirmed logging variable enhancement changes.
These serve as the positive examples for their respective tasks.
To construct a test set that realistically evaluates the decision-
making capability, we then introduced negative samples. For
each positive case, we sampled seven methods that already
contained logging statements (or variables) but did not require
modification or enhancement, according to the real-world
distribution learned in Section While these numbers
are smaller, they represent real, developer-authored logging
improvements.

B. Baselines and Evaluation Scenarios

Due to the lack of logging quality improvement (e.g., mod-
ification) baselines, we primarily include logging statement
insertion methods to evaluate the effectiveness of LOGIM-
PROVER. For confidentiality and safety reasons, LOGIM-
PROVER and all LLM-based models share the same internal
LLM backbone: Doubao-Seed-1.6-thinking.

We selected SCLogger [10], LANCE [9] (tuned on training
set) and the raw LLM model and raw LLM with typical RAG
capability [18]] as our primary baselines. It is important to note
that none of these baselines have the capability to conduct
whether-to-log task and other logging patch generation tasks;
they simply insert logging statement when given a method. For
LLM-based baselines, we provided the relevant instructions for
LLM (voted by developers in ByteDance), such as Evaluate
whether to insert logging statement to this method according
to the practices you have learned. For models that cannot

take instructions, we tuned the model on the training dataset
for whether-to-log task.

C. Evaluation Metrics

Following existing works [10], [L1], we evaluate each
suggestion by comparing it against the ground truth across
a sequential, three-stage process: (1) Decision, (2) Position,
and (3) Content. The evaluation of each subsequent stage is
strictly conditioned on the success of the previous one.
This cascading evaluation logic means that a suggestion is
only evaluated for its Position if its Decision is correct. If
the model incorrectly decides to insert a logging statement,
the subsequent stages for that candidate are not considered.
Similarly, the Content metrics are only measured if the logging
statement is placed at the correct Position.

o Decision: The task of deciding whether to give the sug-
gestion in a given method. We treat this as a binary
classification problem and report the Fi-score as D-F1 to
balance precision and recall.

o Position: The correctness of the log’s location. We report
Position Accuracy (P-ACC), which is 1 if the predicted line
number is right location, and 0 otherwise.

« Content: The quality of the generated log statement itself,
which we break down into its constituent parts:

— Level: The accuracy of the predicted logging level (e.g.,
Info, Error), reported as Level Accuracy (L-ACC).

— Variable: The correctness of the set of variables included
in the logging statement, measured by their F/-score [[10]
as V-F1.

— Text: The quality of the descriptive log message. We
report two standard text similarity metrics: ROUGE-
L [29] and BLEU-1 [30].

¢ Overall Quality (Judge): To capture the holistic quality of
a suggestion, we employ an LLLM-as-a-Judge approach[31]],
[32]] to compare the suggestion to the ground truth with all
contextualized knowledge. We ask the DeepSeek-RI [33],
which demonstrates its capability as a judge [34], [33], to
rate the overall quality of each generated log statement on a
scale of 0-1 with 5 fixed human-labeled examples. Judge is
only measured for suggestions when Decision and Position
are both right, making it an indicator of overall quality for
valid suggestions. We then report the average score.

V. CLOSED-WORLD EVALUATION RESULTS

A. RQI: How effective is LOGIMPROVER in logging quality
improvement?

To answer RQI, we evaluate LOGIMPROVER on three key
logging improvement tasks: logging insertion, logging modifi-
cation, and error enhancement as we defined in Section |III-E

Logging Statement Insertion. We first evaluate the core
task of inserting new logging statements. As shown in Table I}
LOGIMPROVER establishes a new state-of-the-art, significantly
outperforming all baselines. Its ability to accurately answer
the crucial whether-to-log question is demonstrated by a D-
F1 score of 0.714, a substantial 28.2% improvement over the



TABLE II: Evaluation results for the three primary logging improvement tasks.

Task Model Decision Position Levels Variables Texts Judge
(D-F1) (P-ACC) (L-ACC) (V-F1) ROUGE-L BLEU-1

LANCE 0.192 0.285 0.549 0.357 0.244 0.183 0.196

Logging Raw LLM 0.485 0.521 0.682 0.632 0.335 0.305 0.657

Statement Raw LLM + RAG 0.548 0.579 0.739 0.702 0.418 0.426 0.694

Insertion SCLogger 0.557 0.623 0.795 0.725 0.585 0.553 0.725

LOGIMPROVER 0.714 0.651 0.804 0.784 0.572 0.584 0.768

Logging Raw LLM 0.594 — 0.732 0.682 0.684 0.671 0.708

Statement Raw LLM + RAG 0.658 — 0.810 0.723 0.706 0.675 0.735

Modification LOGIMPROVER 0.766 — 0.876 0.817 0.687 0.664 0.792

Logging Raw LLM 0.564 — — — 0.515 0.481 0.657

Variable Raw LLM + RAG 0.591 — — — 0.547 0.498 0.691

Enhancement LOGIMPROVER 0.648 — — — 0.551 0.532 0.738
strongest baseline, SCLogger. This is a direct result of our 10 P21 W/0 Caseading Contextualized Refinement

multi-stage pipeline, where Stage 1’s proactive discovery and
Stage 2’s contextual refinement work in concert to identify
valid logging improvement decision with high precision. For
where-to-log, LOGIMPROVER achieves a P-ACC of 0.651,
precisely localizing the log statement by leveraging the con-
textually identical examples from its knowledge base.

In the what-to-log dimension, LOGIMPROVER again shows
superior performance in generating correct logging Levels
(0.804 L-ACC) and Variables (0.784 V-FI). While SCLogger
achieves a slightly higher ROUGE-L score, this metric can
be misleading as it rewards simple lexical overlap. The supe-
rior BLEU-1 score of LOGIMPROVER suggests its generated
text is more precise. Most importantly, its top-ranked Judge
score (0.768) confirms that its suggestions are perceived as
holistically superior and better aligned with the expectations
of professional developers.

Beyond its superior effectiveness, LOGIMPROVER also of-
fers a significant efficiency advantage for large-scale scanning.
In contrast to baselines like SCLogger, which apply a costly
linting-based refinement phase to every scanned method, em-
ploys a cascading filtering strategy where each stage of the
pipeline progressively narrows the set of candidates. This
ensures that the most resource-intensive, LLM-based analyses
are reserved for only a small set of high-potential candidates.
Our measurements show that the average scanning time per
method for LOGIMPROVER is only 23.76% of that required
by our adapted SCLogger. This efficiency is critical, making
proactive codebase analysis practical at scale.

Logging Statement Modification. This task involves deciding
whether to modify an existing logging statement (D-FI) and
then generating improved content. P-ACC is not applicable
as the location is fixed. As shown in Table while all
models perform reasonably well on decision-making due to
the strong signal of an existing statement, LOGIMPROVER
still leads with a D-F1I of 0.766. For content, LOGIMPROVER
excels in predicting Levels (0.876) and Variables (0.817).
While baselines show slightly higher text similarity, this is
because many ground-truth modifications do not alter the
text, rewarding a passive strategy of leaving it unchanged.

3 W/O Inheritance-Aware False Positive Pruning
EX] Loglmprover

N N

o
Y

e
o

Performance Score
I
IS

o
9

D-F1 P-ACC L-ACC V-F1 ROUGE-L BLEU-1 Judge

Fig. 7: The ablation study result of LOGIMPROVER.

In contrast, LOGIMPROVER often suggests refining the text
for clarity and quality as part of a holistic improvement. The
superior Judge score of 0.792 for LOGIMPROVER confirms
that its more comprehensive suggestions are considered to be
of higher overall quality

Logging Variable Enhancement. This task evaluates the
model’s ability to decide whether to wrap a bare logging
variable (e.g., error) with more context (D-FI) and then
generate the wrapper text. Other metrics are not applicable.
Table [II| shows that LOGIMPROVER significantly outperforms
baselines in identifying enhancement opportunities, with a D-
F1 of 0.648. It also generates the most precise messages,
reflected by its leading scores in ROUGE-L, BLEU-1, and
most importantly, the Judge score (0.738), which confirms the
practical value of its generated enhancements.

Answer to RQ1: LOGIMPROVER demonstrates superior
performance across all evaluated logging improvement tasks:
insertion, modification, and error enhancement, significantly
outperforming baselines in closed-world experiments.

B. RQ2: How do the different phases affect the effectiveness
of LOGIMPROVER?

To investigate the individual contribution of each stage in
our pipeline, we conduct an ablation study by creating three
variants of LOGIMPROVER, each with one key stage removed.
We evaluate these variants on the logging insertion task. The
first variant removes the Proactive Candidate Identification
stage and instead treats every method as a candidate. The



second removes the Cascading Contextualized Refinement
stage. The third removes the Inheritance-Aware False Positive
Pruning stage and does not check for implicit logger behavior.

Proactive Candidate Identification stage serves as the funda-
mental scanning component of our pipeline. Its responsibility
is to act as an initial, high-recall filter, sifting through the entire
codebase to identify a manageable set of potential logging
candidates for the subsequent stages. To quantify this impact,
we conducted an efficiency-focused ablation by removing
Proactive Candidate Identification. Our experiments confirm
this: without proactive filtering, the variant must pass every
scanned method through the resource-intensive RAG pipeline,
increasing the average token cost per scanned method from
6,592 to 26,769, a nearly four-fold increase, confirming the
value as a critical cost-saving filter.

The impact of the other stages on effectiveness is illustrated
in Figure [7] Removing the contextual refinement stage causes
the most severe performance degradation across all metrics,
especially the holistic D-F1 score. This confirms that gen-
erating suggestions from abstract principles alone is insuffi-
cient; grounding them in concrete, peer-validated examples
is essential for quality. Furthermore, while the third variant
performs better, it is still significantly outperformed by the
complete LOGIMPROVER framework. This demonstrates that
even with contextualized examples, failing to analyze implicit
framework behavior introduces critical noise. The superior
performance of the full LOGIMPROVER model clearly shows
that each refinement and pruning stage provides a distinct and
cumulative benefit to the final recommendation quality.

Answer to RQ2: The ablation study confirms that each stage
is crucial. Stage 1 acts as an essential efficiency filter, while
Stages 2 and 3 provide contextual refinement and structural
pruning, contributing to generate high-quality, trustworthy
recommendations.

VI. REAL-WORLD DEPLOYMENT EXPERIENCES

We evaluated the real-world effectiveness of LOGIM-
PROVER through its deployment at ByteDance, starting in
April 2025. It has since been adopted for two primary
use cases: incremental scanning of new merge requests and
comprehensive, SRE-driven analysis of many critical legacy
repositories for logging quality improvement.

At the time of writing, LOGIMPROVER has generated over
3,096 recommendations. The composition of these suggestions
underscores the need for a holistic approach that moves
beyond simple insertion: 38.57% were for insertion, 15.02%
for modification, and 46.41% for logging variable enhance-
ment. LOGIMPROVER achieved an overall labeled developer
acceptance rate of 68.12%. This acceptance in a production
environment validates the practical value of its suggestions
and demonstrates the direct industrial impact of this research.

While a direct measurement of the impact on downstream
direct reliability metrics, such as Mean Time to Resolution
(MTTR), is a critical next step for future work, the developer
acceptance rate serves as a crucial leading indicator. This level
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Fig. 8: A case study from a Kubernetes controller.

of adoption is the prerequisite for achieving a broader, long-
term impact on the overall observability and reliability of the
real-world system.

A. Case Study

To demonstrate how our methodology translates into holistic
recommendations, we present a real-world case study. This
example showcases how the evidence gathered from each
stage is synthesized into a holistic logging patch for the
rollbackWorkload method.

First, LOGIMPROVER identified an error path (i.e., return
err) in which a raw, non-informative error was returned.
It suggested an enhancement to wrap the error with critical
context (the resource’s GroupVersionKind). The provided
explanation justified this recommendation by industrial best
practices and existing patterns within the codebase, making
the error self-explanatory for any upstream consumer.

Second, as prominently featured in Figure [§] LoGIM-
PROVER identified another error path where a critical rollback
operation could fail silently. Instead of a generic suggestion,
the tool presents the developer with a multi-faceted argument,
directly visible along with the logging patch. This argument
is the direct synthesis of the evidence gathered throughout the
pipeline with four reasons: (i) the need for structured context
(e.g., the revision number), the conclusion substantiated
by contextualized examples retrieved; (ii) the perspective from
call stack, which is the direct output of the call-stack logging
responsibility analysis, confirming that no upstream callers
were logging this error and thus ensure the current method’s
responsibility to record the failure; (iii) the pattern and silent
practices learned from the similar examples, another insight
derived from the RAG pipeline, which convinces the developer
by showing similar rollback operations are already logged;
and (iv) the best practice points out the logging responsibility,
linking back to the principle identified in the first stage.

This case study reveals the core principle that drives
LOGIMPROVER’s high developer acceptance: its ability to
convince developers. Rather than simply generating a patch,
LOGIMPROVER constructs a compelling, evidence-based argu-
ment for why the patch is necessary. This ability to synthesize
evidence from every stage makes its suggestions from simple
alerts to trustworthy, expert-level recommendations.

B. Lessons Learned

The real-world deployment of LOGIMPROVER offered sev-
eral critical lessons, demonstrating the challenge of managing



logging debt. We learned that logging debt is not merely a
technical problem of missing logs, rooted in evolving team
practices and the difficulty of maintaining context in large-
scale codebases. This understanding led to two key insights.

First, abstract or outdated best practices are ineffective for
addressing logging debt. Convincing a developer to modify
their code requires grounding recommendations in the current,
living context of the codebase. We found the most effective
recommendations were those derived from the silent prac-
tices discovered within reviewed, mature repositories. This
evidence-based approach of providing relevant, peer-validated
examples proved far more persuasive than appealing to a
generic rulebook.

Second, building a tool for logging debt requires prioritizing
developer trust. Unlike other tools where a deploy-and-iterate
feedback model might work, the tolerance for low-quality,
non-functional suggestions is actually low. A high initial rate
of false positives will cause developers to unsubscribe the
tool, severing the feedback loop necessary for improvement.
This underscores our crucial insight: Establishing developer
trust with high-precision, contextually relevant suggestions is
a prerequisite for any proactive code improvement framework.

C. Threats to Validity

The primary threat to our closed-world evaluation is that
logging quality is inherently subjective. Unlike functional
code, which can be verified through execution [36f], logging
code is evaluated against a ground truth from existing repos-
itories. Our evaluation, in line with prior work, measures
performance by comparing generated code against a ground
truth extracted from existing, mature codebases. This approach
is limited because the ground truth itself may not represent the
optimal standard of logging practices. However, this concern
is substantially mitigated by the results of our real-world
deployment. The high acceptance rate of LOGIMPROVER’S
suggestions by developers in practice validates its effective-
ness, a strong indicator that seasoned engineers find the
generated suggestions valuable.

VII. RELATED WORK

Our work is situated at the intersection of two major
research areas: the generation of observability instrumentation
and its subsequent analysis for system reliability.
Automated Logging Statement Generation: Generally, the
process of logging automation can be categorized into two
stages [37]], [38]: identifying logging locations and the gener-
ation of logging statements, which we summarize as where-
to-log and what-to-log.

In terms of where to log, researchers have explored various
methods [39]], [8], [40], [12l], [7], [41], [42] to select logging
positions within the source code from different aspects and
at different levels of granularity. Regarding what-to-log, the
generation of logging statements is typically broken down into
three subtasks: generating logging text [43[], [O], [18]], [441],
selecting logging variables [45]], [46], [47], and predicting the
logging level [48], [49], [S01], [51]. The most recent approaches
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based on LLM (UniLog [18]], FastLog [44], SCLogger [10],
LANCE [9]) provide an all-in-one solution to generate log
statements, including deciding log locations, levels, content
and variables in one step by leveraging knowledge of LLM.
To simplify the problem, they approach this task by focusing
on generating a logging statement for a given file or function,
rather than scanning and assessing the entire codebase and
identifing the methods need logging.

Our framework introduces a paradigm shift by solving the
critical whether-to-log problem and introducing comprehen-
sive tasks beyond logging statement insertion. Unlike prior
work, LOGIMPROVER proactively scans entire codebases us-
ing industrial best practices and contextual knowledge re-
trieval. It provide an all-in-one solution for recommending
multi-apsect logging quality improvement suggestions.
Log-Driven AIOps Techniques: Once logs are collected, they
become the data foundation for AIOps [52]], [53l], [54], [55],
[56], [57], [58], which aims to automate IT operations. These
techniques analyze logs to perform operation tasks, such as
anomaly detection, root cause analysis, and incident diagnosis.

The goal of these techniques is to learn patterns from
logs. For instance, in log-based anomaly detection, pioneering
unsupervised models like DeepLog [S9] and LogAnomaly [[60]]
learn the sequence of normal log events to identify deviations.
Supervised approaches [61]], [62]] further leverage labeled data
to train more accurate classifiers. To combat data scarcity,
semi- supervised [63] and active learning [64] methods have
also been proposed. In parallel, techniques for root cause
analysis aim to construct causal graphs or trace dependencies
from log event sequences to pinpoint the source of a fail-
ure [52f], [58], [56]. In recent years, the emergence of LLMs
has opened new avenues in this area. For example, SealLog [4],
an LLM-powered trie-based log detection agent, was proposed
to take advantage of the ability to understand logs for system
diagnosis.

However, a critical assumption underpins this entire body of
work: the existence of high-quality log data. The performance
of all these analysis techniques is fundamentally capped by
the quality of logs. LOGIMPROVER is designed to fill this
foundational gap. By proactively and holistically improving
the quality of logging at the source, LOGIMPROVER provides
the data foundation necessary for the entire ecosystem of log-
driven AIOps tools.

VIII. CONCLUSION

This paper introduced LOGIMPROVER, an automated frame-
work to address the manual, reactive and unscalable process
of logging quality improvement in large-scale codebases. We
demonstrated the effectiveness of two paradigm shifts: from
reactive generation to proactive discovery, and from simple in-
sertion to holistic patch generation. This was achieved through
a multi-stage pipeline that combines proactive scanning with
contextual knowledge retrieval and structural pruning. Our
evaluation provides dual confirmation of LOGIMPROVER’S
performance. In controlled experiments, it significantly out-
performs all baselines. Moreover, its industrial deployment



at ByteDance achieved a high developer acceptance rate of
68.12%, confirming the practical value and feasibility of using
a proactive, evidence-based framework to automate the logging
quality improvement lifecycle.
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