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Abstract—Reliability management in cloud service systems is
challenging due to the cascading effect of failures. Error wrap-
ping, a practice prevalent in modern microservice development,
enriches errors with context at each layer of the function call
stack, constructing an error chain that describes a failure from
its technical origin to its business impact. However, this also
presents a significant traceability problem when recovering the
complete error propagation path from the final log message back
to its source. Existing approaches are ineffective at addressing
this problem. To fill this gap, we present ErrorPrism in this
work for automated reconstruction of error propagation paths
in production microservice systems. ErrorPrism first performs
static analysis on service code repositories to build a function
call graph and map log strings to relevant candidate functions.
This significantly reduces the path search space for subsequent
analysis. Then, ErrorPrism employs an LLM agent to perform an
iterative backward search to accurately reconstruct the complete,
multi-hop error path. Evaluated on 67 production microservices
at ByteDance, ErrorPrism achieves 97.0% accuracy in recon-
structing paths for 102 real-world errors, outperforming existing
static analysis and LLM-based approaches. ErrorPrism provides
an effective and practical tool for root cause analysis in industrial
microservice systems.

Index Terms—Cloud Computing, System Reliability, Root
Cause Analysis, Error Tracking, Log Analysis

I. INTRODUCTION

The microservice architecture has become the dominant
paradigm for building complex and large-scale cloud service
systems. While this architectural style enhances scalability, it
fundamentally complicates system observability and diagnos-
tics [1]–[4]. A single end-user request can trigger a cascade
of invocations across a distributed graph of services, making
root cause analysis (RCA) significantly more challenging than
in a monolithic environment. Consequently, a failure in one
service can manifest as a symptom in another, requiring a
holistic view to trace the fault back to its origin.

The error handling paradigm of a programming language
plays a fundamental role in the process of failure diagnosis [5].
For example, Java and Python have an exception system
which interrupts the regular execution flow of programs. When
an exception is thrown, it automatically propagates up the
function call stack unless it is explicitly caught and handled.
However, many languages prevalent in modern microservice
development (e.g., Go, Rust) advocate for a different error
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handling principle, which treats errors as explicit return values.
This non-disruptive approach requires developers to explicitly
handle potential failures at each call site. As an error is passed
up the call stack, each layer can programmatically “wrap”
it with its own context, constructing a layered error chain
that precisely describes a failure from its technical origin to
its business impact. This practice is also common in large-
scale open-source systems. Our analysis of the Kubernetes
repository [6] uncovers 18,762 instances of error wrapping,
which far outnumbers the 4,511 error and fatal log statements.

From a developer’s perspective, this error wrapping at each
layer enables the construction of a self-contained diagnostic
artifact that describes how a low-level fault escalates into a
high-level failure. However, when the wrapped error is logged
for diagnosis, its entire hierarchical structure is typically flat-
tened into a single log string. From a site reliability engineer’s
(SRE’s) perspective, this introduces a significant traceability
challenge when recovering the complete error propagation
path from the symptom (i.e., the composite log message)
to its origin. The log itself contains no explicit pointers
that attribute the different semantic fragments back to their
specific source code locations, leading to multiple potential
backward paths. We term this problem Error Obfuscation. This
ambiguity arises from several practical factors. For example,
a generic error string like “operation failed” may be used in
dozens of unrelated functions. These issues present significant
operational challenges in ByteDance. As a world-leading cloud
service provider, Bytedance operates thousands of microser-
vice applications. When failures occur, SREs need to resort to
complex, manual investigations, inspecting the source code to
retrieve the error propagation path.

Existing approaches are unable to effectively address the er-
ror obfuscation problem. For example, log-based methods [7]–
[10], which often rely on log parsing, are fundamentally
inapplicable. They operate on the assumption of a one-to-
one mapping between a logging statement and its template.
This does not hold as error wrapping allows a single logging
point to produce multiple log events depending on the under-
lying error propagation path. Moreover, errors are typically
logged only at the end of the propagation chain, instead of
every intermediate function. This makes them insufficient for
recovering the entire program execution flow. In addition, logs
alone may lack the detailed context needed to deterministically



trace a failure back to its origin. The source code, in contrast,
explicitly defines the control flow, error handling logic, and the
execution context that describe how an error is enriched and
passed between functions. However, traditional static analysis
is unable to fully harness this information. The prevalence
of asynchronous operations and inter-process communication
creates an explosion of potential execution paths that are diffi-
cult to model statically. It also lacks the ability to comprehend
code semantics essential for solving path ambiguity.

To bridge this gap, we propose ErrorPrism, a framework
for automated reconstruction of error propagation paths in
production microservice systems. ErrorPrism employs a hybrid
methodology that integrates the structural precision of static
analysis with the semantic reasoning capabilities of Large
Language Models (LLMs). Specifically, ErrorPrism performs
static analysis on service code repositories to construct a
function call graph and index error-related string constants
with their function-level provenance. This step maps potential
error fragments to relevant candidate functions, significantly
pruning the search space. Then, an LLM-guided agent per-
forms an iterative, backward search to trace the error log
to its origin. Based on the precomputed artifacts and source
code, the agent jointly reasons about control flow, error-
wrapping patterns, and semantic context to resolve ambiguities
for path reconstruction. We have deployed ErrorPrism in our
production environment at ByteDance, where it monitors a
suite of cloud infrastructure services. In an evaluation on 102
real-world errors, ErrorPrism achieves an overall accuracy
of 97.0% in reconstructing the complete error propagation
path. This performance outperforms both pure static analysis
and naive LLM-based approaches, providing a practical and
effective tool for automating RCA in modern cloud systems.

In summary, our major contributions are as follows:
• We identify and formalize the problem of error obfus-

cation, a critical traceability challenge in modern cloud
services where the common practice of error wrapping
leads to ambiguous log messages that hide an error’s true
propagation path.

• We design and implement ErrorPrism to address the error
obfuscation problem. ErrorPrism uses static analysis to
dramatically prune the search space and then leverages
the LLM’s semantic reasoning to perform an iterative
backward search for accurate error path reconstruction.

• We evaluate ErrorPrism on a large-scale production cloud
platform at ByteDance. Our results show that ErrorPrism
successfully reconstructs the propagation path for 97.0% of
102 real-world errors, significantly outperforming existing
approaches and demonstrating its practical effectiveness.

II. BACKGROUND AND PROBLEM STATEMENT

A. Error Handling in Modern Microservice Systems

In microservice applications (especially those written in
Java and Python), faults are typically signaled by throwing
exceptions. An exception is a disruptive event that diverts
the program from its normal execution path, propagating up

the call stack until it is caught by a designated handler.
Upon catching a failure, this handler logs critical diagnostic
information, such as the exception’s message and a detailed
stack trace, which serves as the primary artifact for RCA and
debugging. In this process, SREs often need to navigate a
vast collection of distributed logs from multiple services. It
involves correlating log entries using tracing IDs [11], [12],
timestamps, and other metadata to manually reconstruct the
sequence of events and pinpoint the original source of the
failure. This log analysis process is often complex, time-
consuming, and requires deep system knowledge [13]–[15].

To mitigate this inherent complexity, many programming
languages prevalent in modern microservice development
(e.g., Go [16], Rust [17]) advocate for an error handling
principle that treats errors as explicit return values [17], [18].
In this paradigm, a function that may fail will return its
result encapsulated in a type that represents both success and
failure, e.g., Rust’s Result<T, E> enum and Go’s (T,
error) multi-value return. This error handling philosophy
offers several advantages that make it particularly well-suited
for building robust services:

• First, it does not interrupt the normal execution flow of
the program. As errors are returned as a regular value,
developers are compelled to explicitly handle potential
failures at each step, preventing unhandled exceptions from
unexpectedly crashing a service.

• Second, it enables compile-time correctness guarantees.
The explicit nature of error-return types allows static
analysis tools and compilers to verify that all possible error
paths are handled. This shifts error management from an
error-prone runtime discipline to a compile-time guarantee.

• Third, it makes errors transmissible as structured data. As
first-class values, errors can be seamlessly transmitted both
within a service using concurrent mechanisms like thread-
safe channels, and between services via RPC responses or
message queues. This allows services to programmatically
enrich errors with structured context for subsequent RCA.

A disciplined implementation of this paradigm involves a
practice known as “error wrapping” or “context enrichment.”
As an error value is passed up the propagation path (which
may span the call stack, component layers, and asynchronous
channels) from a low-level function to a high-level one, each
intermediate layer can add its own contextual information.
This process constructs a detailed error propagation chain,
which can precisely describe a failure with structured context,
from its technical origin to its business impact.

Fig. 1 presents an example in Go to illustrate the concepts
described above, in which the program implements a task
of loading and parsing a numerical setting from a config-
uration file. The main function orchestrates the process by
calling runApp, which in turn delegates to two lower-level
utilities: LoadFile for file system I/O and ProcessData
for string parsing. In each function, errors are treated
as explicit return values. For instance, LoadFile is de-
clared as func LoadFile(path string) (string,
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func runApp() error {
  content, err := LoadFile("settings.txt")

  if err != nil {
    return fmt.Errorf("application setup failed: %w", err)
  }
  result, err := ProcessData(content)
  if err != nil {
    return fmt.Errorf("application setup failed: %w", err)
  }
  log.Printf("Success: %d", result)
  return nil
}

func main() {
  // ...
  if err := runApp(); err != nil {
    log.Printf("Error: %v", err)
    return
  }
  // ...
}

func LoadFile(path string) (string, error) {
  data, err := os.ReadFile(path)
  if err != nil {
    return "", fmt.Errorf("could not read config file 
       '%s': %w", path, err)
  }
  if len(data) == 0 {
    return "", errors.New("config file is empty")
  }
  return string(data), nil
}

func ProcessData(data string) (int, error) {
  num, err := strconv.Atoi(data)
  if err != nil {
    return 0, fmt.Errorf("could not parse config value: %w", err)
  }
  if num < 0 {
    return 0, errors.New("setting value cannot be negative")
  }
  return num, nil
}

LoadFile

ProcessData

runApp

main

File read failed

File is empty

Value format invalid

Negative value

Read Error Process Error

Log Error

1

2

5

6

3

4

Fig. 1: An Example of Error Wrapping and Error Propagation

error), explicitly stating that it will return either a string
on success or an error on failure. This forces the calling
function, runApp, to handle the potential failure immediately
with an if err != nil check. Moreover, the implementa-
tion showcases the practice of error wrapping. Each function
in the call stack adds a layer of context that is specific to its
own level of abstraction and responsibility. This is achieved in
Go using the %w format verb within fmt.Errorf, which
creates a new error that contains the original error. To see this
in action, we trace the execution flow for the failure where the
settings.txt file does not exist.

1) ReadFile cannot find the file and returns an error: open
settings.txt: no such file or directory
(➀). This is the technical root cause. However, on its
own, this low-level OS error is of limited utility for quick
diagnosis. It is precise about what happened at the system
level, but it provides no application-level context about
why that file was being accessed. An operator seeing
such a log would have to manually investigate which part
of the application needs this file and how critical it is.

2) LoadFile catches this generic OS error and wraps it
with its specific task’s context: fmt.Errorf("could
not read config file ’%s’: %w", path,
err) (➁→➂). This specifies the file’s role in the
application, i.e., a configuration file, which immediately
narrows down the failure scope.

3) The resulting error is passed up to the runApp
function, which wraps it again, adding the highest-
level context: fmt.Errorf("application setup
failed: %w", err) (➃→➄). This final layer ex-
plains the ultimate business impact of the failure, i.e., the
entire service could not initialize.

4) Finally, the main function uses this detailed error object
to produce a single, complete log message, which shows
the full chain of wrapped errors (➅):

Error: application setup failed: could not read
↪→ config file ’settings.txt’: open settings
↪→ .txt: no such file or directory

This layered error structure offers a fundamental advantage
over a traditional stack trace. While a stack trace shows the

code execution path, i.e., a sequence of function calls, it lacks
semantic context. An engineer must manually inspect the code
at each frame to infer the program’s intent. In contrast, the
composite error object constructs a causal chain of the failure,
where each layer explicitly states its contribution to the overall
operation. This process transforms low-level signals into a
rich, self-contained diagnostic artifact that is immediately
actionable for both operators and developers.

However, the benefits of this error chain representation can
be lost at the system’s observability layer. By serializing the
entire error hierarchy into a single, flat string, the system
produces logs that are human-readable but machine-unfriendly.
This introduces significant challenges for automated root cause
analysis at the system level, as we discuss next.

B. Error Obfuscation

A fundamental challenge in log-based failure diagnosis [7],
[19]–[25] is the reconstruction of the complete error propaga-
tion path, which traces the failure from its initial source to its
final observable impact. In the aforementioned error handling
mechanism, the final error log is assembled dynamically across
multiple functions. Thus, a single top-level logging statement
can produce messages with different underlying error chains
depending on the failure’s origin. We term this phenomenon
Error Obfuscation. This leads to several key problems in
practical service reliability management:
• The flattening of rich error objects into simple text strings

creates a significant traceability challenge. It is difficult
to attribute the different semantic parts of a composite
log message back to the disparate source code locations.
In reality, an error path is rarely a simple, in-process
call stack. Instead, it frequently crosses asynchronous
boundaries where traditional stack tracing fails and the
causality is obscured. Moreover, it often traverses service
boundaries via RPC calls, leaving the local service with
only a generic network error that masks the true root cause.

• Error obfuscation renders many existing log-based analysis
techniques inapplicable [8], [26]–[30]. These approaches,
particularly log parsing [31], [32], often assume a one-
to-one relationship between a logging statement and the
log template it produces. However, with error wrapping,
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a single logging point can produce a multitude of distinct
log events. To illustrate, consider a different failure within
Fig. 1, where settings.txt contains non-numerical
data. In this case, the same logging statement in main
produces an entirely different log message:

Error: application setup failed: could not
↪→ parse config value: strconv.Atoi:
↪→ parsing "invalid": invalid syntax

This variability breaks the fundamental assumption of
template-based log analysis [28], [29], [33].

• The utility of error wrapping is fundamentally constrained
by inconsistent developer practices. This manifests in two
opposing failure modes: under-enrichment, where devel-
opers forget to wrap errors or omit crucial context, and
over-enrichment, where logs contain verbose technical
details incomprehensible to external consumers like system
operators. Without a clear standard governing what context
should be preserved, a semantic drift emerges between the
internal error structure and its final logged output.

Given these problems, a natural question arises: why not
simply log the error in every function along its propaga-
tion path? While seemingly straightforward, this approach
is counter-productive for several reasons. First, it generates
extreme log verbosity, overwhelming observability systems
and creating an unmanageable signal-to-noise ratio. Second,
and more importantly, it results in contextual fragmentation.
Each log entry contains only the information available at its
specific layer, forcing engineers to manually correlate multiple
log lines to reconstruct the full path. This is precisely the
burden that structured error wrapping aims to eliminate [34].

C. Problem Statement

The issue of error obfuscation renders a significant observ-
ability gap between an error’s final log message and its original
root cause. To bridge this gap, we perform error propagation
tracking in this paper, which is to automatically reconstruct
the causal chain of an error as it traverses function calls,
asynchronous boundaries, and service borders.

Particularly, the input to this problem is an error log L,
which is a composite string representing a specific type of
failure, and the source code repositories C of the microservice
application under study. The output goal is to find the error
propagation path, which is an ordered sequence of functions
P =< fn, fn−1, ..., f1 >. In this sequence, the first function
fn is the one that ultimately prints the error log L, and f1
is the source function where the error originates. For any two
adjacent functions in the path, the latter passes the error to
the former via a direct or indirect calling relationship, thus
forming a complete propagation chain from the error’s origin,
f1, to the final logging point, fn.

III. METHODOLOGY

A. Overview

In this section, we present the design of ErrorPrism. The
overall framework is shown in Fig. 2, which consists of

three phases: code repository static analysis, log template
extraction, and error propagation tracking. The first phase
constructs a function call graph based on static analysis. This
pre-computation creates a reverse index that can rapidly map a
runtime error log to a small set of relevant candidate functions,
significantly narrowing the search space. The second phase
clusters and templates raw logs. This process distills the high
volume of production logs into different log events, each of
which corresponds to a unique error propagation path. The last
phase employs an LLM-guided agent in an iterative search to
reconstruct the failure path. Using the focused context from the
previous phases, the agent reasons about the code to trace the
error backward from the error log to its origin, progressively
building the complete, multi-hop propagation path.

B. Code Repository Static Analysis

Our approach begins with an offline static analysis per-
formed on the microservice code repositories, which consists
of three sequential steps, i.e., function call graph construction,
error-related string constant extraction, and string reachability
computation across the call graph. This pre-computation cre-
ates a reverse index that drastically narrows the search space
for the LLM, providing a focused set of candidate functions
for it to analyze when tracing the error’s execution path.

A function call graph (FCG) is a directed graph, denoted
G = (F , E). Each vertex f ∈ F represents a function within
the service’s codebase, and a directed edge (fi, fj) ∈ E
exists if function fi contains a call to function fj . In our
implementation, we use an internally maintained tool that
parses the source code to identify all function definitions and
invocation sites. We utilize the relatively fast Rapid Type
Analysis algorithm to construct the call graph, and its false-
positive edges will be pruned by subsequent methods.

With the call graph established, the next step is to
identify and associate potential error-message fragments
with the functions that introduce them. We perform a
targeted scan of the golang’s SSA representation for each
function to extract all string constants. This involves an
intra-procedural data-flow analysis to collect string constants
that are directly or indirectly referenced by logging statements
(e.g., logger.Error) and error-creation functions (e.g.,
errors.New, fmt.Errorf). This process yields a
mapping, σ : F → 2S , from each function f to the set
of relevant string constants S that it directly references. In
Fig. 1, this step would create the direct associations of:
σ(main)={"Error: %v"} σ(LoadFile)={"could
not read config file ’%s’: %w", "config
file is empty"}, etc.

The final step is to compute the reachability of these string
constants throughout the call graph. A single log message
often contains a composite string built from fragments con-
tributed by multiple functions in a call chain. To trace such a
message, we must know not only which strings a function ref-
erences directly, but also which strings it can indirectly reach
from the functions it calls. We formalize this concept as the
constant transitive closure, denoted Ck(f), which represents
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the set of all string constants reachable within a call depth of
at most k from a function. A string directly referenced by f
is at a call depth of 0, while a string referenced by a function
that f calls is at a call depth of 1, and so on. The closure is
defined recursively:

Ck(f) =


σ(f) if k = 0

σ(f) ∪ ⋃
(f,g)∈E

Ck−1(g) if k ≥ 1
(1)

In our implementation, we set a call depth limit of k = 3
to balance effectiveness and computational cost. To compute
this finite closure efficiently for all functions, we employ a
backward Breadth-First Search (BFS) starting from each string
constant. For each string, the BFS traverses the call graph
in reverse, propagating the string’s reachability backward to
its callers up to the three-hop limit. The final output of this
phase is a pre-computed index that, for any function, provides
a lookup of all string fragments it could potentially contribute
to a log message, setting the stage for the dynamic log analysis.

C. Log Template Extraction
The second phase addresses the immense volume and vari-

ability of logs generated by production systems. Given that a
service can produce billions of log entries daily, performing
deep source code analysis on each individual message is
computationally infeasible [35]–[38]. Our approach, therefore,
is to first distill this raw data stream into a concise set of
unique and actionable error patterns. This is achieved through
a multi-stage process of log clustering and templating.

To start, we perform a coarse-grained clustering by bucket-
ing logs based on their static source code origin (i.e., file name
and line number), which is often included as metadata in struc-
tured logs. Logs in each cluster all originate from the same
logging statement. Next, we apply log templating within each
coarse-grained group to convert raw log messages into struc-
tured templates (or events) by separating the static text from
variable parameters. For this, we employ Drain3, an efficient,
streaming-capable log parsing approach. This templating step
is fundamental to our methodology for two critical reasons.
First, it isolates the dynamic parameters of the log messages.

They are runtime variables that do not appear as constants in
logging statements, which makes them untraceable with static
analysis techniques. Second, and more critically, it mitigates
the ambiguity caused by error obfuscation. As discussed in
Sec. II-B, a single top-level logging statement can produce
different log events depending on the underlying error chains.
Log templating helps distinguish error propagation paths, i.e.,
each log template corresponds to one error chain. During
runtime analysis, ErrorPrism focuses specifically on logs with
an error severity level. To avoid redundant computation, we
maintain a historical repository of previously processed error
logs and their corresponding propagation paths.

D. Error Propagation Tracking

Given an input log event, in this phase we reconstruct its
error propagation path based on the function call graph G and
constant transitive closure Ck(f). Intuitively, this can be done
by first identifying the log-generating function (Sec. III-C),
and then recursively tracing through the call graph based on
the string constants present in the error template. However, we
face two challenges that render purely static or string-matching
techniques insufficient. First, while Ck(f) can identify a set
of candidate functions that contain relevant string fragments,
this process often yields a large number of false positives. A
generic phrase like “operation failed” could appear in dozens
of unrelated functions across the codebase. This problem is
compounded by developers’ nonstandard logging practices
(Sec. II-B). Identifying the true path requires understanding the
specific inter-procedural control flow and error-handling logic
within each function. Although multi-level call-site-sensitive
pointer analysis could theoretically filter some of these invalid
routes by tracking the flow of the error variable, its prohibitive
computational overhead makes it impractical. The second
challenge is the presence of broken paths within the statically-
constructed function call graph. Modern software relies heav-
ily on dynamic dispatch mechanisms, such as RPC invocations
and asynchronous messaging, which challenge static analysis.
For example, an RPC call is typically represented in the
static graph as a mere invocation of a generic library function
(e.g., client.Call), with the actual business logic endpoint
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specified as a string parameter. Consequently, the static error
propagation link is interrupted at this point.

To address these limitations, we leverage the semantic
understanding and reasoning capabilities of LLMs. The LLM
acts as an intelligent agent that guides the traversal of the
function call graph. It goes beyond simple string matching
by analyzing the full context of the source code. To prune
false positives, the LLM examines the control flow logic, the
structure of error-wrapping calls (e.g., fmt.Errorf), and the
semantic relevance of a candidate function to the overall error
message. Moreover, to bridge the gaps in the static call graph,
the LLM uses its code comprehension to interpret dynamic
invocation patterns. It can parse the string arguments in an
RPC call, identify the target function in a different service,
and intelligently resume the tracing process from that point.

1) Candidate Scoping and Indexing: Before path explo-
ration, we perform a crucial pre-processing step to reduce the
search space and index the relevant data. The objective is to
filter developer-specified microservice repositories down to a
small, relevant set of candidate functions.

This process starts by identifying functions that contain
string constants semantically related to the target error log
event. For format strings, we parse them into their static text
fragments, e.g., "receive package %d from source
%s" is parsed into the fragments ["receive package",
"from source"]. We define the matching rule for a format
string and a log template: a format string is considered a match
if and only if all of its static text fragments are found within
the log template. A function is then selected as a candidate if it
contains at least one matching string, regardless of whether it is
a format string or a literal string. Once the candidate functions
are identified, we build a comprehensive index, which maps
each candidate function’s identifier to its essential metadata,
including its file path and complete source code. This stage
transforms the raw code repositories into a structured, self-
contained map, providing the main exploration algorithm with
immediate, efficient access to all necessary information.

2) LLM-guided Path Reconstruction: While the static anal-
ysis phase effectively prunes the search space, it is inherently
limited by semantic ambiguity. To overcome this, ErrorPrism
employs an iterative reconstruction process guided by a LLM,
which is configured as an autonomous agent. Using the ReAct
framework [39], [40], the agent mimics an expert SRE’s
diagnostic process, combining reasoning with tool use to trace
an error’s path backward. This entire exploration is orches-
trated as a Breadth-First Search (BFS) over the call graph,
ensuring a systematic and complete analysis of all potential
propagation paths. In ByteDance practice, logging middleware
often includes the source function and line number for each
log entry. This allows us to use the specified function as a
precise starting point for our traversal. When this information
is unavailable, we could use constant propagation analysis
to find starting functions by matching their logged string
constants with the target log’s prefix. The agent’s primary task
is to, given a function in the error path, identify the specific
upstream callee responsible for the error. To do this, it is

func reconcilePods(client K8sClient) error {
  pods, err := fetchStatus(client)
  if err != nil {
    return err
  }
  for _, pod := range pods {
    err := syncStatus(client, pod.Owner)
    if err != nil {
      return err
    }
  }
  return nil
}

func fetchStatus(client K8sClient) ([]Pod, error) {
  pods, err := client.ListPods()
  if err != nil {
    return nil, fmt.Errorf("operation failed: %w", err)
  }
  return pods, nil
}

func syncStatus(client K8sClient, name string) error {
  err := client.UpdateDeploymentStatus(name)
  if err != nil {
    return fmt.Errorf("operation failed: %w", err)
  }
  return nil
}

LLM Insight: Only Write operation triggers this webhook.

Pod reconciliation failed: 
operation failed: 
validating admission webhook 
denied the request

Target error log template:

(a) Next-hop Selection in ErrorPrism

Your task is to identify the next hop in an error's propagation path.

Context

Error Log Template:

{{Pod reconciliation failed: operation failed: validating admission webhook denied 

the request}}

Source Code of {{reconcilePods}}:...

Specialized Tools

view_callee_closure(function_name) : …

fuzzy_search_in_closure(keyword) : …

check_function_code(function_name): …

Your Task

Analyze the provided information. Use the tools if necessary to resolve ambiguity.

Conclude by identifying the most likely callee function that is the source of the error. If 

no callee is a likely source, conclude with SOURCE_IS_CURRENT_FUNCTION.

Prompt

Use view_callee_closure(reconcilePods):
 both syncStatus and fetchStatus contain "operation failed”, no more clues.

Use check_function_code(fetchStatus):
 calls the k8s client to list pods (a read operation).

Use check_function_code(syncStatus): 
 calls the k8s client to update a deployment's status (a write operation).
Use check_file_contents(./config/admission-rules.yaml):...

Reasoning: The statement "validating admission webhook denied the request" 

semantically matches a write operation, not a read operation.

SOURCE_IS_CURRENT_FUNCTION: syncStatus

Inference by LLM

(b) Example Prompt in ErrorPrism

Fig. 3: LLM-guided Iterative Propagation Path Construction

equipped with a specialized toolset that allows it to query the
static analysis artifacts and source code on demand.
• view_callee_closure(function): This tool

queries the pre-computed constant transitive closure. It
serves as a rapid, first-pass filter, allowing the agent
to check which of a function’s callees are statically
associated with error strings found in the log.

• check_function_code(function): This tool re-
trieves the full source code of a specified function. It is
essential for deep semantic analysis when string matching
is insufficient, enabling the agent to reason about business
logic, code comments, and overall function intent.

• fuzzy_search_in_closure(keyword): This tool
performs a fuzzy search for a keyword within the string
constants of all functions. It is designed specifically to
bridge broken paths in the call graph, such as by identify-
ing an RPC endpoint defined as a string literal.

We walk through the agent’s workflow using the example
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in Fig. 3, tracing error log "Pod reconciliation
failed: operation failed: validating
admission webhook denied the request". The
process begins at the reconcilePods function. First, the
agent confronts the ambiguous error fragment "operation
failed". It uses view_callee_closure and confirms
that both fetchStatus and syncStatus are potential
candidates, as both can produce this generic error. At
this point, static analysis hits a wall. Faced with this
ambiguity, the agent pivots to a deeper semantic analysis.
It uses check_function_code to inspect the source
code of both candidates. This reveals a critical distinction,
i.e., fetchStatus performs a read operation by listing
Kubernetes resources, while syncStatus performs a
write operation by updating a resource’s status. The agent
synthesizes the code-level distinction with the semantic
content of the error log: "validating admission
webhook denied the request". The agent deduces
that validating admission webhooks in Kubernetes intercept
write operations (like creating or updating resources), not
read operations. To further verify this deduction, it inspects
the webhook’s configuration files. This correlation between
the denied write operation and the code allows it to identify
syncStatus as more likely the true error source. Once
syncStatus is confirmed as the next hop, it is added to
the BFS queue for the subsequent iteration. The agent will
then be reinvoked on syncStatus to trace the path further
upstream. This iterative process continues until the agent
determines that a path’s ultimate origin is found or the BFS
queue is empty, signifying that all potential error propagation
paths have been fully explored.

IV. EVALUATION

In this section, we evaluate the performance of ErrorPrism
in our production environment. In particular, we aim to answer
the following research questions:

• RQ1 (Effectiveness): How effective is ErrorPrism in
reconstructing the propagation path of errors?

• RQ2 (Efficiency): How efficient is ErrorPrism in terms
of inference time?

The evaluation is conducted on a large-scale cloud service
platform at ByteDance. This platform, built on a microservice
architecture, includes a suite of critical applications, such as
billing systems, scheduling systems, and middleware mod-
ules. Our study encompasses 67 representative microservices
that operate on the platform. We collect their source code
repositories which are written in Go, totaling 988k lines of
code. Over time, the development team of this platform has
accumulated a wealth of knowledge regarding historical ser-
vice failures through their daily development and maintenance
activities. They maintain a detailed post-mortem report for
each significant failures, which documents the complete failure
investigation process based on different observability data,
including logs, metrics, and distributed traces. Particularly, the
report also details the manual source code analysis necessary
for failure diagnosis.
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Fig. 4: Distribution of error propagation hop

A. Evaluation Design

1) Dataset Construction: The evaluation dataset is built
through a multi-stage process to ensure its real-world represen-
tativeness and accuracy, including data collection, parsing, and
ground-truth establishment. We begin by collecting a corpus
of over three million raw error logs associated with historical
service failures. To distill this large volume of unstructured
text into structured events, we apply the Drain3 log parsing
algorithm (Sec. III-C). This step clusters the raw logs and
parses them into 257 unique log templates, each representing a
distinct type of error event observed in the system. The ground
truth for each template consists of its complete, manually veri-
fied error propagation path, i.e., the sequence of function calls,
including those across asynchronous and service boundaries,
from the error’s origin to the final logging statement. This is
accomplished through a two-pronged approach. For a subset
of these templates, the paths have been analyzed and recorded
in detailed post-mortem reports, which are crucial for root
cause analysis. For the remaining templates whose path is not
available in the report, we collaborate with the development
teams to construct it. This involves a meticulous process of
manual source code analysis, where engineers trace each error
backward from its logging statement through the complex
microservice call chain to definitively identify its root cause.

The above process yields a final dataset of 102 distinct
and representative error events, each paired with its ground-
truth propagation path. To characterize the complexity of
these real-world failures, Fig. 4 shows the distribution of their
path lengths, measured in hop count, which is defined as the
number of times an error is contextually wrapped during its
propagation. The data reveal that the vast majority of errors
(92.2%) are not logged at their source, frequently requiring
multiple hops to trace. Particularly, 20.6% of these errors
have a path with ≥ 3 hops. This distribution underscores the
necessity of a tool capable of automated propagation tracking.

2) Baseline Methods: We compare ErrorPrism against a
static analysis approach and three LLM-based methods. These
baselines are selected because they represent the state-of-the-
art and key alternative strategies in both traditional program
analysis and generative AI for code.

Static Analysis. This baseline is similar to the candidate
generation phase of ErrorPrism (Sec. III-B), where we con-
struct a static call graph for the service. Thus, it also serves as
an ablation study of our method. We enhance this baseline in
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TABLE I: The Performance of Error Propagation Tracking (%)

Method Hop Total
0 1 2 3 ≥4

ErrorPrism 100 100 95.2 100 85.7 97.0
Static Analysis 100 90.4 98.8 72.9 66.1 90.7
Internal Agent 100 87.1 90.5 84.6 57.1 87.1
CoReQA 75 67.7 54.8 53.8 14.3 57.4
Pure LLM 100 64.5 45.2 30.8 0 50.5

two ways for a fair comparison. First, we integrate invocation
data from the observability platform to add corresponding
call edges to the static graph. Second, we employ a flow-
sensitive, intra-procedural pointer analysis to prune impossible
error propagation paths within individual functions.

LLM-based Methods. We evaluate against three LLM-
based approaches that differ fundamentally in their approach
to accessing and reasoning about source code. To ensure a
fair comparison, all methods (including ErrorPrism) utilize
Deepseek V3 (0324) [41] as the base model. For each error
template, all models are given the same log message and
tasked with generating the error propagation path.
• Internal Code Agent: This is a general-purpose Software

Engineering (SWE) agent currently used in ByteDance.
Like ErrorPrism, it employs the ReAct framework [39],
but it is designed to mimic a human developer’s flexible,
open-ended approach to code exploration rather than being
an expert system engineered for a single task.

• CoReQA [42]: In contrast to an iterative agent, CoReQA
uses a simpler Retrieval-Augmented Generation (RAG)
approach. It performs a one-shot retrieval to find and
extract the text of potentially relevant functions from the
codebase based on the error log. This retrieved context is
then provided in a single prompt to the LLM.

• Pure LLM: This is a crucial baseline to evaluate the raw
reasoning capability of the LLM. The model is provided
with the entire, unmodified source code of the relevant
microservice in its prompt and is tasked with generating
the path without any pre-filtering or iterative guidance.

3) Evaluation Metrics: We utilize the following metrics to
evaluate the effectiveness and efficiency of different methods.

Effectiveness Metrics. Our primary metric for effectiveness
is Accuracy, which measures the percentage of error templates
for which a method’s predicted propagation path exactly
matches the ground truth:

Accuracy =
The number of correctly predicted paths

The total number of error templates
(2)

Since the Static Analysis baseline outputs a set of candidate
functions rather than a single path, standard accuracy is
not applicable. Therefore, we evaluate its performance using
Precision. This metric measures the proportion of correctly
identified functions within the full set of candidates, averaged

across all templates. Let T be the set of all error templates.
The overall score is calculated as:

Precision =
1

|T |
∑
t∈T

|ground truth path(t)|
|candidate paths(t)| (3)

where |ground truth path(t)| is the number of functions in the
correct path for a given template t, and |candidate paths(t)| is
the total number of unique functions in the set of candidates
identified for the same template.

Efficiency Metrics. To evaluate practical viability, we use
Inference Time as the efficiency metric. This metric measures
the average computational time (in seconds) required for a
method to reconstruct the complete error propagation path
for a single log template. For iterative, agent-based methods
like ErrorPrism and the Internal Code Agent, the total time is
largely affected by the length of the propagation path, which
determines the number of iterations. In each step, the latency
is a combination of the LLM call (based on input and output
token counts) and the execution time of any tools used by
the agent. In contrast, for one-shot methods like CoReQA and
the Pure LLM, the time is controlled by a single, large LLM
invocation. The latency is therefore mainly influenced by the
size of the prompt and the length of the generated response.

B. RQ1: The Effectiveness of ErrorPrism

The effectiveness evaluation results are presented in Table I.
With a total accuracy of 97.0%, ErrorPrism significantly
outperforms all baselines. This high level of accuracy is
consistently maintained even on complex error paths with
multiple hops, a scenario where other approaches begin to
degrade. The subsequent analysis explores the key design
choices that contribute to this robust performance.

The results first show that a candidate generation phase
is essential for enabling LLMs to reason effectively in this
domain. The Pure LLM baseline, which provides the model
with the entire codebase as raw context, performs poorly,
achieving only 50.5% accuracy. This confirms that without a
focused search space, the LLM is unable to reliably navigate
the vast complexity of a microservice codebase to identify
the correct error path. In contrast, ErrorPrism’s performance
demonstrates that the high-quality candidate paths generated
by our static analysis phase are a critical prerequisite for
focusing the LLM’s reasoning capabilities.

Furthermore, the evaluation highlights the significant preci-
sion boost provided by the LLM-guided reconstruction phase.
While our static analysis alone provides a strong set of candi-
dates (reflected in its 90.7% precision score), it cannot by itself
disambiguate between multiple plausible paths. ErrorPrism
improves this result to a final accuracy of 97.0%, which
showcases the LLM’s indispensable role in analyzing, ranking,
and selecting the single correct path from the statically-
generated candidates. This capability is particularly crucial in
complex error scenarios where resolving ambiguity requires a
deep semantic understanding of the source code. For paths
with three or more hops, the precision of static analysis
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degrades, whereas ErrorPrism’s accuracy remains consistently
high. For example, on paths of four or more hops, ErrorPrism
(85.7%) is substantially more accurate than the Static Analysis
baseline (66.1%), proving that its reasoning capability is vital
for solving the long-tail and complex diagnostic challenges.

A key premise of our approach is that each log template
corresponds to one error propagation path. This is occasionally
violated by the log parsing tool, Drain, when it misinterprets
static keywords as variable parameters. This leads to the
incorrect grouping of log events from different error paths
into a single template. As a result, the ambiguous template
prevents ErrorPrism from accurately reconstructing the error
propagation paths, constituting the primary source of the 3%
of the failed cases in our evaluation.

C. RQ2: The Efficiency of ErrorPrism

Internal
Code Agent

ErrorPrism LLM CoReQA100
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Fig. 5: The Inference Time of Error Propagation Tracking

The efficiency results shown in Fig. 5 highlight the practical
advantages of ErrorPrism’s hybrid design. With an average
inference time of 5.93 s, ErrorPrism is approximately 8.4x
faster than the Internal Code Agent (49.75 s). This baseline,
as a general-purpose framework, must explore a vastly larger
search space. This forces it into a costly iterative loop of
reasoning, tool use, and observing lengthy outputs (e.g., entire
code files). As a result, its conversational history with the LLM
snowballs, making each turn progressively slower and more
computationally expensive. In contrast, ErrorPrism uses static
analysis to massively prune the search space before engaging
the LLM agent, providing it with a highly focused context. The
box plot also reveals a long tail in ErrorPrism’s performance
distribution, indicating that some cases have longer inference
times. These outliers typically correspond to errors with long
and complex propagation paths where the initial static analysis
is less effective at pruning the candidate set. In these scenarios,
the agent must perform more iterative steps to traverse the
ambiguous path, increasing the overall time.

Interestingly, the performance distributions of Pure LLM
and CoReQA do not exhibit a similar long tail. This can be
attributed to their one-shot architecture, which makes their
inference time dependent only on the size of the prompt and
the response length, rather than the logical complexity of the
path. However, this architectural choice is the fundamental
reason for their low accuracy. The one-shot design means that
if the initially retrieved context is incomplete or misleading,
the model has no mechanism to recover or supplement the

information through subsequent interactions. It must generate
a final judgment in a single pass from potentially flawed
input, making it highly prone to error. Therefore, while these
baselines may have a lower median inference time, their
efficiency is achieved at the expense of accuracy, severely
limiting their practical value as discussed in RQ1.

D. Case Study From Production Deployment

To demonstrate ErrorPrism’s practical effectiveness, we
present a case study from its deployment in our production
environment, where it solved a diagnostic challenge that is
intractable for both static analysis and modern AIOps tools.

The incident began with control plane alerts, accompanied
by a high volume of error logs. After considerable manual
effort, engineers isolated a recurring, composite error message:

resource belongs to: failed to split resourceID
↪→ of access policy: invalid resourceID:
↪→ Delete-123-456-cluster-prod-west-a

Existing code-blind tools [26] are ineffective in this case.
While they can flag the message as an anomaly, they
offer no actionable insight into the failure’s origin or
its multi-part structure. This left engineers with only a
high-level symptom. The manual investigation, detailed in
Fig. 6, reveals a non-trivial failure path that is challenging
for conventional static analysis. The error propagates first
through an interface method call r.BelongTo (➁) and
then across an asynchronous boundary via a Go channel
(➀). After a deep manual trace, the root cause was finally
found in the low-level splitResourceID function
(➄). Its implementation was built on the hard-coded
assumption of a simple, four-part, hyphen-delimited string:
[action-type]-[policy-id]-[account-id]-
[cluster-id]. The failing ID (Delete-123-456-
cluster-prod-west-a), however, violated this format
because its cluster-ID part (cluster-prod-west-a) itself
contained hyphens, which is a new naming convention for
recently provisioned clusters. The legacy string-splitting logic
could not handle this variation, causing the parser to fail.

ErrorPrism is able to automate the entire manual inves-
tigation process. Its LLM-guided agent successfully recon-
structs the complex propagation path by reasoning about the
code’s semantics. Specifically, it 1) resolves the r.BelongTo
interface call (➂→➁) by semantically matching the error
message fragments to the correct implementation, and 2) traces
the err variable’s flow through the asynchronous errChan
(➁→➀). As highlighted in Fig. 6, with over 20 methods
implementing the Resource interface, the static analyzer
cannot infer the concrete runtime type of the resource
object. Thus, it must treat each one as a potential source
of the error. By semantically matching the error message
fragment "access policy" to the source code, ErrorPrism
correctly identifies the AccessPolicy implementation of
the Resource interface. This enables it to trace the err vari-
able’s flow through the asynchronous errChan and pinpoint
splitResourceID as the origin of the failure. This delivers
the exact code path that took the engineer considerable time to
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// The top-level handler that makes the final decision 
func MessageQueueConsumer(resourcesChan <-chan Resource) {
  errChan := make(chan error, 10)

  // Use a go-routine to log error
  go func() {
    for err := range errChan {
      log.Error(err)
    }
  }()
  for resource := range resourcesChan {
    go func(r Resource) {
      if err := r.BelongTo(&info); err != nil {
        errChan <- fmt.Errorf("resource belongs to: %w", err)
      }
    }(resource)
  }
}

// A higher-level function that orchestrates a business process
func (ap *AccessPolicy) BelongTo(info *ClusterInfo) error {
  err := splitResourceID(ap.resource_id)
  if err != nil {
    // WRAP the original error with execution context.
    return fmt.Errorf("failed to split resourceID of access policy: %w", err)
  }
  return nil

}

// A low-level helper function that process resourceID
func splitResourceID(raw_id string) (string, error) {
  // ... logic to split resourceID...
  if err != nil {// Assume that resourceID is invalid.
    return "", fmt.Errorf("invalid resourceID :" + raw_id)
  }
  return id, nil
}

func (*clusterService) BelongTofunc (*clusterService) BelongTofunc (*clusterService) BelongTo
Over 20 methods 

implement Resource 
Interface

5

3

2

1

4

Fig. 6: An Error Tracking Case in Production Systems

find. In our workflow, this precisely identified path is provided
as context to a SWE Agent for a focused, final-mile analysis.
This allows the agent to deduce the root cause, i.e., the
string-splitting logic’s failure to handle the new cluster naming
convention, providing a complete and actionable diagnosis.

E. Limitation Discussion

We acknowledge some limitations of our study. First, the
selection of code repositories for static analysis presents a
trade-off. An overly broad scope can overwhelm the constant
transitive closure and harm efficiency, while a narrow scope
may miss crucial code, reducing accuracy. We mitigate it by
working with developers to select a set of 67 internal mi-
croservices repositories, which contain the propagation paths
for the vast majority of the error logs under study. Additionally,
ErrorPrism’s methodology is tailored for languages like Go
that treat errors as explicit return values. While exception-
based languages like Java face challenges similar to error
obfuscation during execution flow recovery [8], [20], applying
our framework to support this paradigm requires different
static analysis techniques. We leave this for future work.

V. RELATED WORK

Fault Localization. Reconstructing the causal chain of
an error and tracing its propagation path among services
is a long-standing challenge in fault diagnosis and system
debugging [43]–[45]. Many methods analyze the root causes
of errors by mining patterns in observability data. For in-
stance, Minesweeper [46] performs root cause analysis by
comparing error patterns between buggy and normal traces
from application telemetry. While this method is effective,
it inherently relies on aggregated telemetry data, with its
core lying in statistical-level pattern isolation, and does not
explain the causes of errors at the code level. Some methods
use static analysis to analyze potential microservice defects.
Zhang et al. [47] proposed a pointer-analysis-based method

for constructing higher-precision cross-component call graphs
in microservices, and showed these extended graphs can
be applied to cross-component taint analysis. CIMET [48],
proposed by Cerny et al., uses static analysis to build inter-
microservice call graphs and identify potential anti-patterns.
While effective, its analysis is limited to predefined rules and
ignores the program’s underlying semantics.

In contrast, ErrorPrism is designed to trace multi-hop error
propagation paths at the code level. By moving beyond prede-
fined rules, it achieves this through a primarily static solution
without requiring program execution.

LLM for Program Analysis. LLMs are transforming the
field of program analysis [49]. This emerging paradigm seeks
to overcome the limitations of traditional, rule-based systems
by applying the inherent ability of model to reason about the
semantics of program, rather than relying solely on syntactic
patterns. Several recent works use LLMs to interpret the output
of other analysis tools. For example, LLift [50] improves
binary taint analysis by using an LLM to handle bug-specific
modeling and navigate large codebases. A key insight from
this work, which informs our design, is the finding that LLMs
can reason more effectively about raw source code than about
intermediate representations (IRs). The work of Chapman et
al. [51] interleaves static analysis (EESI) with an LLM. In this
approach, intermediate results from the static analysis are used
to prompt the LLM for error specifications, which are then fed
back into the analyzer to trace the error path.

Instead of classifying the output of analysis tools or gener-
ating static code properties, ErrorPrism employs a synergistic,
iterative process. It leverages static analysis not as a calling
tool, but as a powerful mechanism for massive search space
reduction. By doing so, ErrorPrism can automatically recon-
struct the complete, multi-hop error propagation path.

VI. CONCLUSION

This paper tackles the problem of error obfuscation, which
arises when the common practice of error wrapping cre-
ates ambiguous log messages that obscure a failure’s true
propagation path. To solve this, we presented ErrorPrism,
a framework that automates the reconstruction of the com-
plete error path. ErrorPrism first performs a comprehensive
static analysis on source code to build a function call graph
and index error-related strings, drastically pruning the search
space. It then employs an LLM-guided agent to perform an
iterative, semantic-aware search, accurately tracing the error
from the final log message back to its origin. Evaluated on 102
real-world errors in a large-scale production environment at
ByteDance, ErrorPrism achieves 97.0% accuracy, significantly
outperforming both traditional static analysis and other LLM-
based baselines. By effectively transforming error logs into
precise and actionable diagnostic paths, our work provides a
practical solution for microservice reliability management.
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[51] P. J. Chapman, C. Rubio-González, and A. V. Thakur, “Interleaving
static analysis and llm prompting,” in Proceedings of the 13th
ACM SIGPLAN International Workshop on the State Of the Art
in Program Analysis, ser. SOAP 2024. New York, NY, USA:
Association for Computing Machinery, 2024, p. 9–17. [Online].
Available: https://doi.org/10.1145/3652588.3663317

12


