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Abstract—In the field of log compression, the prevailing “parse-
then-compress” paradigm fundamentally limits effectiveness by
treating log parsing and compression as isolated objectives. While
parsers prioritize semantic accuracy (i.e., event identification),
they often obscure deep correlations between static templates and
dynamic variables that are critical for storage efficiency. In this
paper, we investigate this misalignment through a comprehensive
empirical study and propose LOGPRISM, a framework that
bridges the gap via unified redundancy encoding. Rather than
relying on a rigid pre-parsing step, LOGPRISM dynamically
integrates structural extraction with variable encoding by con-
structing a Unified Redundancy Tree (URT). This hierarchical
approach effectively mines “structure+variable” co-occurrence
patterns, capturing deep contextual redundancies while acceler-
ating processing through pre-emptive pattern encoding. Extensive
experiments on 16 benchmark datasets confirm that LOGPRISM
establishes a new state-of-the-art. It achieves the highest compres-
sion ratio on 14 datasets, surpassing existing baselines by margins
of 6.12% to 83.34%, while delivering superior throughput at
29.87 MB/s (1.68×∼43.04× faster than competitors). Moreover,
when configured in single-archive mode to maximize global
pattern discovery, LOGPRISM boosts its compression ratio by
273.27%, outperforming the best baseline by 19.39% with a
2.62× speed advantage.

Index Terms—Information Redundancy, Log Compression,
Log Analysis, System Maintenance

I. INTRODUCTION

Software systems generate logs to record runtime events,
errors, and operational states, which are indispensable for sys-
tem maintenance [1]–[8] and performance optimization [9]–
[11]. However, the sheer volume of log data poses significant
storage challenges [12], [13]. Modern large-scale systems can
produce terabytes or even petabytes of logs daily [14]–[16].
Thus, efficient log compression has become a critical concern
for managing storage costs while preserving the analytical
value of historical log data [14], [17].

Logs typically follow a “template+variables” pattern, where
static strings are interleaved with dynamic runtime parameters.
General-purpose compression algorithms like gzip [18] and
LZMA [19] fail to exploit the specific characteristics of log
data, often resulting in suboptimal compression ratios [20]. To
address this, recent research has focused on log-specific com-
pression methods that leverage the inherent semi-structured
nature of logs. By separating the template and variable com-
ponents, parser-based compressors can replace repetitive tem-
plates with compact identifiers and compress variable streams
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with specialized encoding techniques, achieving significantly
higher efficiency.

Despite these advancements, existing approaches face a
fundamental limitation, i.e., the decoupling of log parsing [21],
[22] and compression. Current workflows treat parsers as a
black-box pre-processor, which aim to maximize semantic
accuracy (i.e., identifying the correct templates) without regard
for downstream compression effectiveness. To quantify the
impact of this misalignment, we conduct a comprehensive
empirical study evaluating four state-of-the-art compressors
and nine parsers. Our findings reveal that semantically accurate
parsers may produce templates that undermine compression
performance, such as over-generalized templates that offload
excessive entropy to the variable stream, or over-fitted tem-
plates that incur substantial dictionary overhead. Furthermore,
the conventional “parse-then-compress” pipeline creates a
boundary between the log structure and parameters, preventing
the exploitation of deeper redundancies. Specifically, it ignores
template-variable correlations, where specific variable values
are strongly tied to a template and could be encoded as part of
the structure, and inter-variable correlations, where variables
within a single log entry co-occur in predictable patterns. By
treating these components in isolation, existing methods fail
to mine and encode these high-value aggregate patterns.

To overcome these limitations, we propose LOGPRISM, a
log compression framework that unifies structural extraction
and variable encoding. Instead of relying on a pre-defined
parsing stage, LOGPRISM constructs a Unified Redundancy
Tree (URT) that dynamically models both log structure and
variable correlations in an integrated representation. Our ap-
proach employs a hierarchical redundancy mining strategy
that progressively distills log data through three stages. First,
we extract stable log tokens to construct a structural tree,
establishing a compact skeleton for subsequent analysis. Sec-
ond, we extend the skeleton by building variable subtrees
to mine frequent “structure+variable” co-occurrence patterns,
effectively bridging the gap between templates and parameters.
Finally, we execute residual data processing to efficiently
handle the remaining high-entropy “long-tail” variables using
a specialized sorting and stream normalization pipeline.

This design maximizes compression ratios by capturing
deep contextual redundancies while simultaneously acceler-
ating processing speed. By filtering out the majority of high-
frequency patterns in the early stages, LOGPRISM drastically
reduces the computational load on the final, expensive residual
processing stage. We further enhance scalability through a
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parallel-aware architecture that supports fine-grained concur-
rency. Extensive experiments on 16 datasets from LogHub [21]
demonstrate that LOGPRISM sets a new state-of-the-art for
both effectiveness and efficiency. It achieves the highest com-
pression ratio on 14 datasets (surpassing existing baselines
by 6.12%∼83.34%) while delivering the fastest processing
speeds (1.68×∼ 43.04× faster than competitors). Moreover,
we address a critical trade-off of baselines, which rely on
chunking dataset to enable parallelism at the cost of limited
global pattern discovery. When configured in non-chunked
mode, LOGPRISM boosts its compression ratio by 273.27%,
outperforming the leading compressor, Denum, by 19.39% in
the same mode. Particularly, LOGPRISM’s speed in this com-
putationally intensive mode (15.77 MB/s) remains comparable
to Denum’s default chunked performance (17.83 MB/s).

In summary, this paper makes the following contributions:
• We conduct the first comprehensive empirical study to

quantify the impact of log parsers on compression, reveal-
ing the critical misalignment between parsing accuracy and
compression efficiency.

• We propose the concept of unified redundancy encoding,
a paradigm shift that co-designs structural extraction and
variable encoding to exploit deep “structure+variable” cor-
relations. Based on this concept, we design and implement
LOGPRISM, a high-performance log compression frame-
work featuring a unified redundancy tree and a parallel-
aware architecture.

• We perform an extensive evaluation demonstrating that
LOGPRISM significantly outperforms existing state-of-the-
art methods in both compression ratio and speed.

II. BACKGROUND AND MOTIVATION

A. Parser-based Log Compression

In the realm of log compression, parser-based methods rep-
resent the predominant approach. They leverage the inherent
semi-structured nature of logs, typically composed of static
format strings and dynamic parameters. The process begins
with a critical prerequisite step, i.e., log parsing. As illustrated
in Fig. 1, parsers like Drain [23] are employed to decompose
raw log messages, separating structured headers (e.g., times-
tamps, log levels) from the free-form body, and then segment
the body into an invariant event template and its corresponding
variables. This structured representation enables the core com-
pression mechanism, where repetitive template text is replaced
with compact identifiers (stored only once in a dictionary)
and the extracted parameters are aggregated for subsequent
encoding using specialized compression techniques. The re-
sulting output, which is a highly regular stream of template
IDs and parameter arrays with significantly reduced entropy, is
then processed by general-purpose algorithms like LZMA or
gzip to eliminate any remaining statistical redundancy. Several
representative log compressors [24]–[27] exemplify different
design philosophies within this framework.

The performance of these parser-based compressors is fun-
damentally tied to the quality of the log parsing stage [27],
[28]. However, existing research mainly focuses on compres-
sion algorithms that operate on the parsed logs. Their designs,
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Fig. 1. The General Workflow of Parser-based Log Compression

therefore, default to an assumption of ideal parsing quality.
The parser is often treated as an independent component
rather than an integral part of the compression pipeline whose
performance demands critical evaluation. This has led to a
common practice where an off-the-shelf parser is selected
based on secondary criteria like execution speed or ease of
integration. However, there is no one-size-fits-all parser. Log
parsers employ a variety of heuristics and algorithms, and their
accuracy can vary significantly across different datasets with
diverse log formats. Any errors introduced during parsing [22],
[29]–[31] will inevitably propagate and undermine the effec-
tiveness of the downstream compression algorithms. Despite
this critical dependency, the interplay between parsing accu-
racy and compression efficiency remains largely unexplored.
To systematically evaluate the impact of different log parsers
on the performance of log compression, and to further reveal
the critical role of parsing in the compression pipeline, we
conduct a comprehensive empirical study in this paper.

B. Revisiting Log Parsers in Compression Pipelines

In this section, we perform an empirical study to investi-
gate how the choice of log parsers quantitatively affects the
performance of existing log compressors. We collect a set of
representative log parsers and parser-based log compressors,
and perform controlled experiments across multiple bench-
mark datasets that are widely used in log analysis domain.

1) Experiment Setup: We introduce the experiment setup
of our study as follows:

Log Parser Selection: We select nine representative log
parsers, i.e., Drain [23], AEL [32], IPLoM [33], LFA [34],
LogSig [35], MoLFI [36], SHISO [37], Spell [38] and the
parser implemented in LogReducer [25]. By covering this
broad spectrum of algorithmic strategies, our study can gener-
ate heterogeneous template sets and provide a robust evalua-
tion of their impact on downstream compression performance.
These parsers span seven distinct methodological families,
from simple heuristics to complex data-driven models. For
instance, AEL represents the heuristic approach that uses
lightweight, generic rules to distinguish static text from dy-
namic parameters, requiring minimal domain knowledge. In
contrast, Drain and LogReducer employ fixed-depth parsing
trees, where root-to-leaf paths define templates, enabling ef-
ficient online processing. Other parsers frame the task as a
data mining problem. LFA applies frequent pattern mining
and IPLoM iteratively partitions log messages based on token
position and cardinality. Clustering-based parsers like LogSig
and SHISO identify templates by computing pairwise message
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similarity and treat each resulting cluster’s centroid as a tem-
plate. Our selection also includes other novel strategies. Spell
identifies templates based on the longest common subsequence
algorithm, making it particularly effective for streaming data.
MoLFI leverages evolutionary algorithms to iteratively evolve
optimal template sets via genetic operations.

Log Compressor Selection: To select representative log
compressors, we review existing solutions [13], [14], [24]–
[27], [39]–[41] in the literature and apply two filtering criteria.
First, we exclude online compressors [13], [39]. Our study
focuses on offline lossless compression for long-term storage,
which prioritizes maximizing storage efficiency across the en-
tire dataset. In contrast, online methods optimize for reducing
real-time transmission overhead, often operating under tight
resource constraints and with the possibility of lossy compres-
sion [39], [42], [43]. Second, we prioritize selecting the state-
of-the-art approaches that represent the most effective method-
ologies in the field. This process yields four representative
compressors: Logzip [24], LogReducer [25], LogShrink [26],
and Denum [27]. While Denum is primarily a number-centric
approach designed to bypass traditional template extraction,
we include it because it relies on parser-based strategies like
LogShrink to compress its non-numeric log content. Conse-
quently, how the input text is parsed or tokenized remains a
critical factor in Denum’s overall performance.

These approaches feature a different design in log structure
extraction and encoding strategies, providing a diverse testbed
for our study. Logzip, as a pioneer in parser-based com-
pression, employs iterative clustering to uncover latent struc-
tures, transforming logs into a hierarchical representation with
template identification and parameter mapping. LogReducer
advances this idea by focusing on inter-parameter correlations,
utilizing an elastic numeric encoding scheme to dynamically
select compact bit representations, complemented by delta
encoding for sequential data. Similarly, LogShrink optimizes
parameter storage by reorganizing data into columnar formats,
grouping homogeneous types to create low-entropy streams
ideal for dictionary encoding [44]. Finally, Denum introduces
a number-centric approach that targets numerical data, using
regular expressions to isolate numeric strings for categoriza-
tion and differential encoding to minimize redundancy.

Dataset Selection: To ensure generalizability and robust-
ness, our evaluation utilizes the widely recognized LogHub
benchmark [21]. As detailed in Table I, this collection com-
prises 16 datasets spanning a broad spectrum of system
types, including large-scale distributed systems (e.g., HDFS,
Spark), supercomputers (BGL, Thunderbird), server applica-
tions (Apache, OpenSSH), operating systems (e.g., Linux,
Windows), mobile platforms (Android, HealthApp), and stan-
dalone software (Proxifier). In total, the full benchmark con-
tains over 77 GB of raw logs and approximately 378 million
log entries. However, our preliminary experiments revealed
that the Android and Windows datasets could not be processed
by some parsers within a reasonable time budget due to
their inherent complexity. Consequently, we exclude these
two datasets from our empirical study. Our final evaluation
is conducted on the remaining 14 datasets, which collectively
account for over 50 GB of data and 262 million log entries,

TABLE I
DETAILED STATISTICS OF BENCHMARK LOG DATASETS

System Type Dataset File Size # Lines

Distributed Systems

HDFS 1.47 GB 11,175,629
Hadoop 48.61 MB 394,308
Spark 2.75 GB 33,236,604
Zookeeper 9.95 MB 74,380
OpenStack 58.61 MB 207,820

Supercomputers
BGL 708.76 MB 4,747,963
HPC 32.00 MB 433,489
Thunderbird 29.60 GB 211,212,192

Operating Systems
Windows 26.09 GB 114,608,388
Linux 2.25 MB 25,567
Mac 16.09 MB 117,283

Mobile Systems Android 183.37 MB 1,555,005
HealthApp 22.44 MB 253,395

Server Applications Apache 4.90 MB 56,481
OpenSSH 70.02 MB 655,146

Standalone Software Proxifier 2.42 MB 21,329

spanning diverse log formats and structural complexities.
Evaluation Metrics: To quantify how different log parsers

impact the effectiveness of downstream compression, we em-
ploy the Compression Ratio (CR), a standard metric in data
compression. It is defined as the ratio of the original log file
size to the compressed file size. A higher value indicates better
compression performance.

Compression Ratio (CR) =
Original Log Size

Compressed F ile Size

2) Experiment Workflow: We design a controlled workflow
for the study, which is structured into three phases, i.e., log
parsing, intermediate normalization, and log compression.

In the initial phase, we apply the nine selected log parsers
to generate structured template collections for each dataset.
During this process, we observe significant inconsistencies in
parser outputs regarding wildcard notation, delimiter usage,
and file formats. For example, some parsers use <*> to denote
variables, while others use markers like spec or simply omit
the variable tags. Such heterogeneity creates format incompat-
ibilities that can prevent downstream compressors from cor-
rectly recognizing templates. To eliminate these discrepancies,
we perform intermediate normalization in the second phase.
This standardizes all parser outputs into a single canonical
format, while preserving semantic content. Specifically, we
unify all wildcard symbols, align metadata structures to a uni-
form schema, and convert outputs to a consistent file format.
This ensures that compression performance differences reflect
parsing quality rather than formatting artifacts. In the final
phase, we evaluate the four selected compressors using these
normalized templates. This presents a technical challenge, as
most off-the-shelf log compressors are monolithic systems
with tightly coupled parsing and compression modules. To
address this, we systematically refactor their source code,
decoupling data ingestion from the core compression logic.
We develop dedicated input interfaces that allow us to inject
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Fig. 2. Impact of Log Parser Selection on Downstream Compression Ratio across Different Datasets

our normalized templates, creating a controlled environment to
test each compressor against templates from all nine parsers.

3) Experimental Results: Fig. 2 presents the compression
ratio achieved by four log compressors when supplied with
templates generated by nine different parsers. Our analysis
reveals three key observations that fundamentally challenge
the current parser-based paradigm for log compression.

Observation 1: Dramatic Performance Variance Induced
by Parser Selection. For any given compressor, the choice of
parser induces dramatic variance in the final compression ratio,
often surpassing the inherent performance differences between
the compressors themselves. Three compressors (LogZip, Lo-
gReducer, and LogShrink) exhibit particularly strong sensitiv-
ity. For example, on Zookeeper, LogShrink achieves a CR of
121.06 when using templates from LogReducer’s parser, but
this plummets to just 44.81 with the IPLoM parser’s templates.
Denum, which is not fully parser-based, also demonstrate
notable performance fluctuations, confirming that the handling
of non-numeric text remains critical. Such results provide clear
evidence that parser selection plays a critical, yet previously
overlooked, role in compression efficiency.

Observation 2: Default parsers are not always optimal.
Counter-intuitively, our experiments reveal that compressors
can achieve higher compression ratios using external parsers
rather than their built-in ones. On BGL, for instance, LogRe-
ducer achieves a CR of 38.04 when using its own default

parser, but this increases to 43.08 when paired with the
SHISO parser. A similar trend is observed on the HealthApp
dataset, where SHISO again outperforms LogReducer’s native
parsing logic (29.98 vs. 27.71). These findings suggest that the
tight coupling of specific parsers with compressors in current
designs can be suboptimal, preventing the compression algo-
rithms from realizing their full potential on diverse datasets.

Observation 3: Parsing Accuracy Does Not Guarantee
Compression Efficiency. Our results demonstrate that there
is no universally optimal parser capable of consistently maxi-
mizing compression efficiency across all datasets and compres-
sors. While Drain generally performs well, it is significantly
outperformed by SHISO and LFA on Thunderbird. Conversely,
SHISO excels on BGL but yields suboptimal results on HDFS
and OpenStack. Even the ground-truth templates (labeled
“Correct”) are frequently outperformed by heuristic parsers.
This variance indicates that a parser’s effectiveness for com-
pression is not intrinsic but depends on the complex interplay
between data characteristics and the compressor’s encoding
strategy. The root cause of this volatility lies in a fundamental
misalignment of objectives: parsers prioritize classification
accuracy to maximize event clustering correctness, whereas
compressors prioritize storage efficiency. Parsers emphasize
semantic accuracy without considering the storage cost of the
resulting templates and parameters. This leads to two typical
inefficiencies that degrade compression performance despite
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Fig. 3. A 12-line Log Snippet as a Running Example

high parsing accuracy:

• Over-generalization (Coarse-grained Templates): Parsers
prioritizing high matching rates with fewer templates often
introduce excessive wildcards. On HDFS, for instance,
LFA generates only 42 templates but with a total of 372
wildcards (8.8 per template on average). While this may
yield high parsing accuracy, it offloads complexity to the
parameter stream. The compressor is forced to process
large, noisy parameter sets that should have been static
template text, severely degrading the compression ratio.

• Over-fitting (Fine-grained Templates): Conversely, overly
sensitive clustering thresholds can partition semantically
similar logs into numerous distinct templates. For exam-
ple, some parsers produce over 28,000 templates for the
HealthApp dataset, which contains only around 150 ac-
tual event types. This “template explosion” exponentially
increases the dictionary size, creating a direct storage
overhead that undermines compression efficiency despite
high formal parsing precision.

In summary, our empirical study confirms that log parsing
is not a mere preprocessing step but a dominant factor in the
ultimate efficiency of log compression. The fundamental prin-
ciple of exploiting log structural redundancy is sound, which
enables parser-based approaches consistently and significantly
outperforming general-purpose algorithms like gzip or LZMA.
However, our findings reveal a critical flaw in its common
decoupled implementation. We argue that unlocking optimal
log storage performance requires a paradigm shift where
structural extraction is not a prerequisite for compression but
an integral, co-designed part of it.

C. A Motivating Example for Unified Redundancy Encoding

In this section, we illustrate the core concept of our ap-
proach based on the logs in Fig. 3. The idea is to move beyond
the rigid dichotomy of “static strings vs. dynamic variables” by
modeling log tokens (whether traditionally considered a static
string or a variable) uniformly and encode them in aggregate
based on their co-occurrence and dependencies. To this end,

we propose a paradigm shift from the traditional parse-then-
compress workflow and introduce a new methodology called
unified redundancy encoding.

Consider the sshd log entries in Fig. 3 (L5-L7 and
L9-L12). Since variable user, rhost, and uid take dif-
ferent values, a conventional parser may generate a log
template like "...authentication failure; user=
<*> rhost=<*> uid=<*> euid=0". When compress-
ing these logs, e.g., L5, existing compressors would first
store an identifier for this template and then independently
encode the variable values (test1, pokemon1.cs.edu,
and 509). In this process, two types of correlations are
ignored. The first is template-variable correlation. For pure
log compression purposes, the template ID could include
certain variables if they are strongly tied to the template body,
eliminating separate parameter processing. Although parsers
may occasionally inline frequent variables (e.g., euid=0 in
Fig. 3) into the template, this behavior is inconsistent and not
measurable. The second is inter-variable correlation within
each log entry, which allows for the collective processing of
variables. For instance, user test1 deterministically maps to
uid 509, and user root maps to uid 0. This differs from
prior correlation mining methods [26], [27] that mainly model
relationships across log entries (e.g., incremental user IDs).

Our method is more holistic and context-aware. It recog-
nizes that the value set {test1,pokemon1.cs.edu,509}
(L5 and L7) is a frequent pattern occurring within the con-
text of the aforementioned template. Therefore, our method
aggregates both parts as "...authentication fail-
ure; user=test1 rhost=pokemon1.cs.edu uid=
509 euid=0" and encodes it with a single ID. Similar
frequent patterns include {root,pc180.edu.tw,0} (L9
and L11) and {root,julia.arkos.de,0} (L10 and L12),
while only srv2.alfahost.nl (L6) needs to be handled
independently. The advantage of this unified redundancy en-
coding is significant: whereas existing approaches require stor-
ing one template ID plus three separate variable IDs, we need
only a single ID to represent the entire, highly correlated token
sequence. This principle of co-designing structural extraction
and pattern encoding enables us to discover and exploit deep
contextual redundancies in log data.

A straightforward way to implement this idea is to build a
prefix tree (i.e., a trie) over the sequences of log tokens and
assign IDs to frequent paths, thereby identifying recurring log
(sub)sequences. However, this naive construction presents two
fundamental limitations. First, high-cardinality fields induce
many branches, causing the number of nodes to grow with
the product of distinct values per position. This results in
prohibitive storage consumption and increased lookup latency
due to structural inefficiency. Second, a trie only encodes
prefixes. If an infrequent token appears early, the match stops
and the rest of the log line is no longer compressible, even
when the suffix is highly regular (e.g., uid=509 euid=0
after a rare rhost in L6). These constraints motivate our
design of LOGPRISM, an effective log compressor which
moves beyond pure prefix matching and supports compact,
gap-tolerant aggregation of frequent token sequences.
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III. METHODOLOGY

In this section, we introduce LOGPRISM, our log compres-
sion framework that constructs a Unified Redundancy Tree
(URT) to jointly model log structure and variable correlations.
Since a naive prefix tree over raw logs would suffer from
combinatorial branch explosion, LOGPRISM employs a hier-
archical redundancy mining strategy to build a structurally effi-
cient URT. We progressively integrate log tokens into the URT
based on their frequency and stability through three stages, i.e.,
Structural Tree Construction, Variable Subtree Encoding, and
Residual Data Processing, as shown in Fig. 4. The first stage
builds the structural skeleton of the URT based on regular,
fixed tokens. Each path in this tree represents a group of log
entries that are structurally similar, regardless of the log events
they represent. The second stage integrates frequent variable
tokens by expanding the skeleton’s terminal nodes into sub-
trees. Within each subtree, we mine deep correlations between
the structural skeleton and specific variable values, allowing a
single ID to represent complex, recurring “structure-variable”
patterns. The third stage handles the remaining “long-tail”
tokens (i.e., outliers that are too rare or random) by isolating
and encoding them via specialized schemes suited for high-
entropy data. The entire compression pipeline concludes by
feeding all compressed data into a general-purpose compressor
(e.g., LZMA) to exploit remaining byte-level redundancy.

It is essential to note that LOGPRISM’s hierarchical com-
pression pipeline is fundamentally different from the decou-
pled “parse-then-compress” workflow. LOGPRISM’s ultimate
goal is to unify the encoding of both structural and variable
tokens into an end-to-end redundancy pattern, rather than
treating them as separate entities for isolated compression.

A. Structural Tree Construction

The primary objective of this stage is to construct the
foundational skeleton of the URT by extracting stable patterns
from the raw logs. To ensure high throughput and a low
memory footprint, we implement this process within a parallel
streaming architecture. The log dataset is partitioned into
multiple chunks, each processed concurrently by a dedicated
worker thread to build local structures. As depicted in Fig. 4,

this construction phase proceeds through two key steps: 1)
Parallel Pre-processing and Local Tree Generation, where
logs are tokenized, filtered, and organized into local prefix
trees; and 2) Global Tree Aggregation and Isomorphic Subtree
Merging, which integrates these local trees into a unified
global structure while dynamically refining the topology.

1) Parallel Pre-processing and Local Tree Generation: The
pipeline within each worker thread involves two operations,
i.e., the pre-processing of the assigned log chunk to filter
volatile content, and the construction of a local structural tree.

To prevent the “branch explosion” associated with high-
cardinality data, we identify and separate two categories of
rapidly-changing tokens.

• Globally Patterned Metadata: This category includes com-
mon header fields like dates, timestamps, and process
IDs (PIDs) [21]. These tokens, while highly variable,
exhibit predictable syntactical patterns. Storing them in a
string-based tree is highly inefficient. Thus, we identify
them using predefined regular expressions and extract
their values into separate, highly compressible columnar
streams, preserving the global order of the logs. As illus-
trated in Fig. 5(a), these tokens are replaced with specific
placeholders (e.g., ⟨X⟩ for month, ⟨dt⟩ for timestamp, ⟨P ⟩
for PID) in raw logs.

• Unstructured Numeric Tokens: This category targets tokens
within free-text log contents that are likely to be variables.
Based on a simple and effective heuristic from prior re-
search [27], we treat tokens containing numeric characters
as potential variables. We apply this rule to tokens not
captured by the metadata regex and uniformly replace the
matched ones by the wildcard placeholder ⟨∗⟩, as shown
in Fig. 5. The original values of these tokens are collected
sequentially into a varList associated with the specific
log entry. In this process, two types of misclassifications
can happen. First, static tokens containing numbers (e.g.,
node1) are generalized as variables. Since LOGPRISM
treats static and dynamic tokens as a holistic entity,
these tokens can be re-integrated into the structure during
correlation mining stage (Sec. III-B). Second, string-only
variables (e.g., user=root) are treated as static, causing
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Fig. 5. The Pre-processing Pipeline for Log Entry L5

potential tree fragmentation. This is explicitly addressed
via isomorphic subtree merging in the subsequent step.

After pre-processing, the resulting log messages are used to
construct a local prefix tree. For example, dividing the logs
from Fig. 3 into two chunks (L1-L6 and L7-L12) yields the
independent trees shown in Fig. 6(a) and Fig. 6(b), respec-
tively. In this structure, every terminal node marks the end of
a log message. Crucially, a terminal node is not necessarily
a leaf node, since one log entry can be a complete prefix of
another. Each path from the root to a terminal node uniquely
identifies a group of log entries sharing the same structural
pattern. To index these groups, a Record Object is maintained
at every such terminal node, aggregating the Line IDs (Lid)
and extracted varList(s) for all corresponding logs.

2) Global Tree Aggregation and Isomorphic Subtree Merg-
ing: Once the worker threads generate their local structures,
the main thread integrates them into a single global tree and
refines the topology. We employ an on-arrival merge strategy
to minimize synchronization overhead. As soon as a worker
thread completes its chunk, its local prefix tree is merged
into the global one. As depicted in Fig. 6(c), this merge
process aggregates information along identical paths and adds
new branches where structures differ (e.g., the user=root
branch from the second chunk). Concurrently, the columnar
data streams from each thread are appended to global files,
preserving the original order of the log dataset. For numerical
streams like ⟨dt⟩, we apply a specialized compression pipeline
consisting of Delta Encoding (to store value differences),
ZigZag Encoding (to efficiently represent negative numbers),
and Varint Encoding (for variable-length integer representa-
tion) to generate a final compact binary format.

Although the number-based heuristic for identifying volatile
fields in the first step is effective, it can potentially misclassify
purely string-based variables. For instance, user=test1 is
correctly generalized to ⟨∗⟩ (due to "1"), but user=root
would be incorrectly identified as a stable token. This in-
consistency creates unnecessary branches and fragments the

tree. To resolve this, we introduce a correction process named
isomorphic subtree merging. It operates on the principle that if
a “static” branch and a “variable” branch lead to subtrees that
are topologically isomorphic, they serve the same structural
role and should be treated uniformly as a variable.

The merging process is implemented as a post-order
(bottom-up) traversal of the global tree. At each branching
node, it computes a unique structural signature for every
child subtree. If a node contains a linear path, its signature
is simply the concatenation of its tokens. For nodes with
multiple branches, we lexicographically sort the signatures
of all outgoing branches before concatenating them. Any
sibling nodes sharing identical structural signatures will be
considered isomorphic, and the algorithm performs a merge
operation. Fig. 7 demonstrates this iterative merging. The
traversal moves up from the leaves and, as shown in Fig. 7(a),
encounters its first branching node user=root. It compares
the child nodes ⟨∗⟩ (which represents numeric rhosts) and
rhost=julia.arkos.de by computing the structural sig-
nature for the path under each. Since both yield the same se-
quence of ⟨∗⟩ nodes (as highlighted by the green dashed box),
they are topologically identical. This isomorphism indicates
that rhost=julia.arkos.de should also be a variable
token (i.e., ⟨∗⟩). The system then merges these two paths by
(i) inserting the value "rhost=julia.arkos.de" into the
corresponding position of the varList (the red arrow line)
for all logs traversing that path, and (ii) merging the Record
Object (i.e., Lids and updated varLists) from the string
branch into the sibling wildcard branch. The result is the more
generalized structure in Fig. 7(b). As the traversal continues up
to the next branching node, failure;, the system performs
another similar merge as shown in Fig. 7(c).

The choice of a bottom-up traversal is critical for accurate
path mergings. By processing the tree from the leaves upward,
the algorithm ensures that sibling nodes sharing the longest
common prefixes are evaluated for merging first. Such paths
are more likely to be truly isomorphic [23]. It also ensures that
any structural inconsistencies at deeper levels are resolved first,
recursively generalizing the tree into its most compact form. In
case of incorrect mergings, LOGPRISM can separate the outlier
variables during the correlation mining stage (Sec. III-B).

Finally, we traverse the global tree to index the structural
contexts. Every terminal node is assigned a globally unique
pathID. As shown in Fig. 8, this ID acts as a structural
context identifier, representing a group of logs that share the
exact same skeletal structure. For example, all sshd logs (L5-
L7 and L9-L12) in the example are mapped to pathID=3.
The core role of the pathID is to provide clear log groupings
for the next stage of variable correlation analysis, where
each log is represented by its original line number (Lid), its
structural context identifier (pathID), and its varList.

B. Variable Subtree Encoding

The construction of the structural context tree leverages only
stable tokens, resulting in a highly compact skeleton where
all variable tokens are aggregated at the terminal nodes. To
capture the deep correlations between the log structure and its
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Fig. 6. The Parallel Pre-processing and Streaming Merge Process of the Structural Tree

Fig. 7. The Iterative, Bottom-up process of Isomorphic Subtree Merging

parameters, we can conceptually extend the URT by attaching
a prefix subtree to each terminal node, using the varLists
of the associated log entries as input paths. By doing so,
we unify the structural skeleton and variables into a single,
continuous representation. However, this presents two critical
challenges. First, a naive sequential insertion of variables in-
evitably triggers a secondary branch explosion. As illustrated
in Fig. 9(a), if variables are processed in their original order
(e.g., v0 → v1 → v2 → v3), a high-cardinality variable
may appear early in the sequence (e.g., a rhost at v1),
forcing the subtree to branch at the top layers. Consequently,
even if later variables form a highly frequent pattern (e.g.,
uid=509→ euid=0), it is fragmented into multiple separate
branches, preventing efficient compression. Second, we require
a robust mechanism to distinguish meaningful patterns from

Fig. 8. The Final Global Structural Tree with pathID Assignments

random noise. Since variables are high-entropy, assigning a
unique ID to every combination would result in a prohibitively
large dictionary and compromise the compression benefits.
Therefore, we must selectively encode only frequent, co-
occurring variable combinations (the “signal”) into the URT,
while actively filtering out rare or random values (the “noise”)
to be handled as residuals (Sec. III-C).

1) Variable Reordering for Efficient Subtree Construction:
To mitigate the secondary branch explosion, LOGPRISM re-
structures the variable subtree topology via a two-step op-
timization process. This involves a stability-based sort that
prioritizes low-entropy variables for insertion. By forcing
frequent patterns to share a common prefix, this strategy
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Fig. 9. The Motivation and Effect of Variable Reordering

effectively pushes high-cardinality branching to the deeper
levels of the tree. Consequently, correlated variable sequences
are materialized as deep, continuous paths (Fig. 8) rather than
fragmenting prematurely.

The optimization begins with high-frequency filtering,
which prunes infrequent variables, as shown in Fig. 10(a).
For each variable position within a log group, we com-
pute the frequency of every unique value and discard any
that fall below a pre-defined threshold τ , e.g., the rare
rhost=srv2.alfahost.nl. If all values at a given
position are filtered out, the entire position is excluded
from subsequent analysis. For instance, in the httpd log
group (pathID=1) shown in Fig. 8, the sole variable v0
(transaction_id) is removed entirely because both of its
values (5001 and 5002) are too infrequent. In this work,
we use τ as our universal threshold for different filtering
operations to screen out outliers, which avoids the overhead
of managing multiple distinct thresholds and reduces overall
system complexity.

The second step is variable reordering, which establishes
the optimal insertion order for the remaining variables. The
reordering is determined by a heuristic that prioritizes stability.
We calculate two key metrics for each variable position, i.e.,
total frequency (the sum of occurrences of all its values)
and discriminative power (the number of its unique values).
Variables are then sorted in descending order of total fre-
quency. Any ties are resolved by sorting in ascending order
of discriminative power, which favors variables with fewer
unique values. In the sshd example, after filtering, v1 has
the lowest total frequency, i.e., six, while the other positions
share a total frequency of seven. Among those, v3 has the
lowest discriminative power of one. This heuristic thus yields
the optimal construction order of v3 → v0 → v2 → v1, which
is the crucial input for the final subtree construction phase.

2) Subtree Construction and Unified Redundancy Encod-
ing: With the established variable order, this phase constructs
the variable subtrees to identify and encode co-occurrence
patterns. While the reordering was guided by aggregate statis-
tics, it does not guarantee that individually frequent variables
appear together in the same log entry. For instance, a specific
user and rhost might both be globally frequent, but if they
never co-occur (e.g., that user never logs in from that host),

they do not form a valid pattern. Therefore, this stage validates
these patterns by iterating through each log’s varList,
ensuring that compression identifiers are assigned only to
variable combinations that genuinely exist in the data.

The construction process is illustrated in Fig. 10(b). As each
log’s varList is traversed according to the optimal order
(i.e., v3 → v0 → v2 → v1), a path is extended in the subtree.
Every node in this tree maintains a cnt attribute, a key metric
that records the number of logs whose reordered variables
share that specific prefix. For logs like L5 and L7, which are
composed entirely of frequent variables, a complete path is
formed, and the cnt value of every node along that path is in-
cremented. In contrast, the traversal for log L6 terminates pre-
maturely because its variable rhost=srv2.alfahost.nl
was filtered out as a low-frequency value. Consequently, L6
only increments the cnt values for its matched prefix (euid=0
→ user=test1→ uid=509). This distinction is crucial, as
the cnt attribute now precisely tracks the frequency of both
complete and partial patterns. Next, a pruning operation is
performed, which acts as a second layer of filtering, removing
paths composed of individually frequent variables but whose
combination is rare. Any node whose cnt falls below the
pruning threshold τ is removed. While no nodes are pruned in
our simplified example (Fig. 10), this is crucial for eliminating
noise in complex datasets.

The most critical step is the assignment of new universal
pathIDs. To maximize compression efficiency, identifiers are
assigned only to nodes that represent the termination of a high-
frequency aggregate pattern. This ensures that every pathID
corresponds to a meaningful, recurring token combination,
preventing an explosion in dictionary size due to rare partial
matches. We term these nodes “stable endpoints” and identify
them using the cnt attribute under two conditions. First, any
leaf node is inherently a stable endpoint, as it represents the
explicit termination of a pattern that has already survived the
high-frequency filtering process (i.e., τ ). For example, the
rhost=pokemon1.cs.edu node in Fig. 10(b) is assigned
pathID=5 because it marks the end of the pattern for logs
L5 and L7. Second, a non-leaf node is designated a stable
endpoint if the difference between its cnt and the sum of its
children’s cnt values is not less than the threshold τ . This
“residual count” represents the number of log entries whose
pattern matches exactly up to this node but does not continue
to any of its high-frequency children. By enforcing the thresh-
old, we ensure that we only create a new ID if a substantial
number of logs terminate at this specific intermediate point.
For instance, the uid=509 node has a cnt of 3, while its only
child has a cnt of 2. The residual count of 1 indicates that
one log (L6) terminates its match here. If this residual meets
the threshold, the node is marked as a stable endpoint and
assigned pathID=4, allowing LOGPRISM to hierarchically
encode both complete patterns and frequent sub-patterns.

The final encoded output, shown in Fig. 10(c), is a highly
compact representation of the log data. Log messages that fully
match a frequent path, such as L7 and L9, are represented by a
single pathID (5 and 6, respectively). Logs that only partially
match, like L6, are represented by the pathID of their longest
matched prefix (pathID=4), while the unmatched token
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Fig. 10. The Variable Subtree Encoding Pipeline for the sshd Log Group (pathID=3)

(rhost=srv2.alfahost.nl) is preserved as a residual
variable in the log’s varList for processing in the third
stage. This process is the core manifestation of our unified
redundancy encoding concept. Crucially, the new pathID is a
logical extension of the initial structural pathID. It represents
the complete “structure + variable” collective pattern. Unlike
traditional methods that require one identifier for the template
and separate ones for each variable, our approach uses a single
pathID to represent the entire high-frequency combination.
For fully matched logs, this identifier replaces both the original
structure and all of its variables, achieving a significant gain
in compression efficiency.

C. Residual Data Processing

After the first two stages have captured high-frequency
collective patterns, the remaining data constitutes the “long-
tail” data, i.e., outlier variables characterized by high entropy
and weak correlation. This final stage is designed to efficiently
compress these residual components by leveraging simpler,
linear patterns that may exist. Our approach is guided by
the principle of efficient residual handling: after the URT has
filtered out complex correlations, this final pipeline can focus
on simpler sequential regularities.

1) Global Sorting for Temporal Coherence: The structural
grouping in the first stage, while effective for mining template-
based redundancy, inevitably fragments the natural time order
of logs. This can obscure valuable patterns that span across
different structural groups. As shown in Fig. 11(a), logs from
different sources (e.g., httpd and database) may share a
sequential transaction_id. To uncover these dependen-
cies, the core of this stage is a global sorting pipeline. We
aggregate the residual information from all log groups and
perform a global re-sort based on the original Line ID (Lid).
This operation restores the dataset’s temporal coherence, re-
aligning dispersed entries like L3, L4, and L8 and exposing the

incremental numeric sequence (5001, 5001, 5002), which
is now highly amenable to delta compression.

2) Just-in-Time Residual Templatization: The residual vari-
ables after the second stage are a heterogeneous mix of
complex strings, atomic identifiers, and pure numbers. This
diversity prevents efficient columnar compression. To resolve
this, we employ a just-in-time templatization strategy that
iterates through the sorted queue and parses each variable into
homogeneous components.

For each residual variable, a regex-based extraction mech-
anism decomposes it into its invariant static fragments and
dynamic numeric parts. We then borrow the core principle
from Denum [27] to classify each extracted numeric string
based on its intrinsic features (e.g., length, first digit) and
generate a corresponding placeholder. This unified process
gracefully handles three distinct scenarios:
• Complex Numeric Variables: For a composite vari-

able like audit(1119799950.864:693295): in
log L1, the process generates a generalized tem-
plate from its static parts and placeholders (e.g.,
audit(⟨jb ⟩.⟨c ⟩:⟨fg ⟩):) and dispatches each nu-
meric value to its respective columnar stream.

• Atomic String Variables: For a variable that can-
not be further deconstructed, such as rhost=srv2.
alfahost.nl from log L6, the entire string is treated
as an indivisible atomic template and assigned a unique
template ID.

• Pure Numeric Variables: For simple numbers like 5001,
a minimalist placeholder template (e.g., ⟨df ⟩) is gen-
erated, and the value is appended to the corresponding
numeric stream.

The result of this process is a set of dense, homogeneous
columnar streams, as shown in Fig. 11(b). The pathID of
each log is written to the main stream, followed by the
template IDs for its residual variables in the ResVar streams.
Concurrently, all extracted numeric values are written to their
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Fig. 11. The Residual Data Processing Pipeline in Stage 3

specialized Value Streams, which are then compressed using
Delta Encoding followed by ZigZag and Varint encoding.

Although this stage borrows the principle of numeric clas-
sification from Denum, our hierarchical redundancy mining
strategy is fundamentally different. Denum performs an indis-
criminate, global numeric/non-numeric split from the outset,
which can prematurely destroy valuable contextual correla-
tions. In contrast, LOGPRISM has already processed the vast
majority of high-frequency tokens (including many numerics)
via unified redundancy encoding in the first two stages. Con-
sequently, the computationally intensive parsing logic of this
stage is applied only to a minimal subset of true residual data.
This targeted approach provides a dual advantage: a higher
compression ratio, as it preserves the “structure + variable”
correlations, and faster compression speed, by confining the
expensive variable processing to a much smaller dataset.

The pipeline concludes by aggregating all generated compo-
nents, i.e., the URT, the residual template dictionary, and the
various columnar data streams, into a single compact archive,
which is finally processed by a general-purpose compressor
(e.g., LZMA) to exploit remaining byte-level redundancy.

D. Decompressor

The decompression process of LOGPRISM is the precise
inverse of compression, achieving lossless log reconstruction.
The process begins by loading the metadata from the com-
pressed archive, including the URT, the residual template
dictionary, and all columnar data streams. The core of the
reconstruction is a sequential traversal of the main pathID
stream, reconstructing logs line by line. Since this stream was
written in the order of the original log entries, processing it
sequentially naturally restores the original log order.

For each pathID read from the stream, a two-stage re-
construction process is performed. First, the pathID is used
to perform a reverse lookup in the URT. By tracing backward
from the pathID node to the root, we instantly reconstruct the
log’s complete high-frequency “structure + variable” pattern.
For a log that was fully matched during compression (e.g.,
L5), this single lookup is sufficient to recover all its tokens,
including both the structural and variable tokens. For a log

with residual variables (e.g., L1 or L6), this lookup only
recovers the matched portion, and the remaining variables
are then reconstructed by reading their template IDs from
the ResVar streams and resolving them against the residual
template dictionary. At this point, a semi-reconstructed log line
is formed, containing all static and high-frequency variable
tokens but still holding placeholders for dynamic values (e.g.,
⟨dt⟩, ⟨P ⟩, and ⟨jb ⟩). Therefore, the second step performs
global placeholder substitution. For each placeholder encoun-
tered, the decompressor reads the next available value from the
corresponding columnar data stream and substitutes it in place.
This multi-layered mechanism guarantees 100% accuracy, as
all data streams are consumed in the exact order in which
they were generated, ensuring a perfect reconstruction of the
original log file.

IV. EVALUATION

We conduct a comprehensive evaluation to demonstrate the
effectiveness and efficiency of LOGPRISM. Our evaluation is
designed to answer four critical research questions:
• RQ1: How does LOGPRISM’s compression ratio compare

to state-of-the-art log compressors?
• RQ2: How does LOGPRISM’s compression speed compare

to state-of-the-art log compressors?
• RQ3: What are the individual performance contributions

of LOGPRISM’s hierarchical stages?
• RQ4: What is the impact of input data granularity on

LOGPRISM’s performance?

A. Experimental Settings

1) Datasets: Consistent with our previous empirical study
(Sec.II-B), we utilize the LogHub benchmark [21] for eval-
uation. However, while the empirical study involved only
14 datasets, this evaluation incorporates the full suite of 16
datasets. The additional datasets (i.e., Android and Windows)
were previously excluded due to the scalability limitations
of certain parsers. In this evaluation phase, all selected com-
pressors successfully handle these datasets using their default
parsers, allowing for a comprehensive assessment across the
entire benchmark.
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2) Evaluation Metrics: We employ two fundamental met-
rics in the field of log compression: the Compression Ratio
(CR) to quantify effectiveness (higher values indicate better
compression) and the Compression Speed (CS) to measure
efficiency (higher values indicate faster processing). The CR
was previously defined in Sec. II. The CS is defined as:

Compression Speed (CS) =
Original F ile Size (MB)

Compression T ime (s)

3) Baselines: We compare LOGPRISM against compre-
hensive baselines spanning both state-of-the-art log-specific
compressors and well-known general-purpose compressors.
• Log-Specific Compressors: We evaluate LOGPRISM

against the same four state-of-the-art methods stud-
ied in our empirical study (Sec. II-B). These include
LogZip [24], the pioneering parser-based method; Lo-
gReducer [25] and LogShrink [26], which represent ad-
vanced approaches optimized for parameter correlation and
variability; and Denum [27], the leading number-centric
compressor that operates without traditional parsing. This
selection ensures a comprehensive comparison against the
best existing techniques across different design paradigms.

• General-Purpose Compressors: We include four com-
pressors in this category: gzip (a traditional compressor
based on the DEFLATE algorithm, known for good speed
but moderate compression ratios), bzip2 (which uses the
Burrows-Wheeler Transform for better compression at the
cost of lower speed), LZMA (a dictionary-based algorithm
typically offering the best compression ratios but is rela-
tively slow), and PPMd (which compresses by analyzing
character sequences and predicting probabilities, excelling
on plain text but degrading significantly on logs with high-
entropy numeric variables).

For metrics independent of the experimental environment
(CR), we directly cite the results from the original papers
of the respective log compressors. For environment-dependent
metrics (CS), we re-ran all available open-source tools in our
unified environment to ensure fair comparison.

4) Implementation: All experiments were conducted on a
Linux server with an AMD EPYC 9224 CPU (24 cores/48
threads, 3.70 GHz) and 251 GB RAM, running Ubuntu 22.04
LTS (kernel 6.8.0). LOGPRISM is implemented in C++ and
compiled with g++ following the C++20 standard. Regular
expression matching relies on the PCRE2 library. Similar to
Denum, the PCRE2_CODE_UNIT_WIDTH was set to 8.

To align with the evaluation settings of Denum and related
work, all input log data for RQ1-RQ3 experiments were
split into 100K-line chunks for parallel compression. Each
compressor uses 4 threads for processing each chunk. To
ensure fair architectural comparison, our main evaluation of
LOGPRISM constrains the internal operations of each chunk-
processing thread to be single-threaded, matching the execu-
tion model of the baselines. To demonstrate the full potential
of our parallel-aware design, we also evaluate an enhanced
configuration, denoted as LOGPRISM-P, where each of the 4
chunk-processing threads utilizes an internal pool of 4 worker
threads. The total time to compress all chunks is recorded.

LOGPRISM employs the ‘tar’ utility to package all generated
intermediate files, which are then compressed with ‘lzma’ to
form the final archive.

B. RQ1: The Compression Ratio of LOGPRISM

Table II presents the compression ratio comparison across
all benchmarks. LOGPRISM achieves the highest compression
ratio on 14 of 16 datasets, establishing a new state-of-the-art
in compression effectiveness.
Comparison with general-purpose compressors: Regarding
general-purpose tools, LOGPRISM demonstrates substantial
superiority over all of them. Compared to gzip, LOGPRISM
achieves a 5.68× higher average compression ratio, reaching
up to 27.94× on specific datasets. Against the stronger LZMA
baseline, improvements range from 1.57× (Proxifier) to 5.99×
(OpenSSH). Similarly, the ratio over bzip2 ranges from 1.26×
(Proxifier) to 7.36× (Windows), and over PPMd, it ranges
from 1.17× (Proxifier) to 8.14× (Windows). These results
confirm that exploiting log-specific structure yields significant
compression gains.
Comparison with log-specific compressors: LOGPRISM ad-
vances the state-of-the-art among log-specific methods. Com-
pared to LogReducer, CR improvements reach up to 59.26%.
Against LogShrink, the maximum gain is 56.63%. Notably,
even compared to the current leading method Denum, LOG-
PRISM achieves substantial improvements of up to 25.93%
on Linux and 18.86% on Thunderbird. The LogZip result for
Thunderbird is marked as unavailable (–) because, as reported
in the LogShrink paper [26], LogZip failed to complete parsing
within one week.

This systematic performance advantage of LOGPRISM
stems from a fundamental architectural shift. Traditional meth-
ods (whether the “parse-then-compress” workflows or De-
num’s “numeric/non-numeric” split) perform an irreversible
token categorization early in the process. This leads to the
loss of contextual correlations that spans these category bound-
aries. In contrast, LOGPRISM’s unified redundancy encoding
paradigm co-designs structural extraction with pattern encod-
ing. This enables representing entire, highly correlated “struc-
ture + variable” token sequences with single path identifiers,
where other methods require one template ID plus multiple
independent variable IDs. Our hierarchical redundancy mining
strategy prioritizes encoding high-value aggregate patterns
while preserving full context, allowing it to exploit deep
redundancies in log data.

On the two datasets where LOGPRISM does not achieve
the highest CR (HDFS and Spark), performance remains
highly competitive. On HDFS, the difference from optimal
is minimal (3.12%). The larger gap on Spark reflects the
characteristics of the dataset, i.e., Spark logs are dominated by
simple, repetitive templates with single continuously changing
numeric values (e.g., over a million records like "Update
row <*>") [27]. In this case, the deep correlation mining
of LOGPRISM’s second stage offers less advantage compared
to methods specifically optimized for simple numeric streams.
Nevertheless, LOGPRISM achieves a better performance bal-
ance in these cases with significantly higher compression
speed, as we demonstrate in RQ2.
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TABLE II
EXPERIMENTAL RESULTS OF COMPRESSION RATIO

Dataset gzip LZMA bzip2 PPMd LogZip LogReducer LogShrink Denum LOGPRISM

Android 7.742 18.857 12.787 19.370 25.165 20.776 21.857 32.494 32.822
Apache 21.308 25.186 29.557 31.688 30.375 43.028 55.940 58.517 64.330
BGL 12.927 17.637 15.461 18.927 32.655 38.600 42.385 41.804 47.145
Hadoop 20.485 36.095 32.598 32.110 35.008 52.830 60.091 78.546 79.733
HDFS 10.636 13.559 14.059 19.155 26.666 22.634 27.319 25.670 26.466
HealthApp 10.957 13.431 13.843 15.337 12.632 31.694 39.072 44.472 50.477
HPC 11.263 15.076 12.756 14.822 27.208 32.070 35.878 45.275 45.447
Linux 11.232 16.677 14.695 18.508 23.368 25.213 29.252 30.449 38.343
Mac 11.733 22.159 18.074 28.469 26.306 35.251 39.860 40.789 44.992
OpenSSH 16.828 18.918 22.865 31.977 42.606 86.699 103.175 101.654 113.327
OpenStack 12.158 14.437 15.231 17.429 17.258 16.701 22.157 22.238 23.356
Proxifier 15.716 18.982 23.619 25.489 21.493 25.501 27.029 27.288 29.849
Spark 17.825 19.908 26.497 30.614 20.825 59.470 59.739 59.470 54.813
Thunderbird 16.462 27.309 25.428 33.026 – 49.185 48.434 63.824 75.862
Windows 17.798 202.568 67.533 61.083 310.596 342.975 456.301 481.350 497.298
Zookeeper 25.979 27.667 36.156 38.931 47.373 94.562 116.981 135.251 143.742

Summary for RQ1: LOGPRISM surpasses existing general-
purpose and log-specific compressors in compression ratio
on 14 out of 16 datasets, establishing a new state-of-the-art
in compression effectiveness.

C. RQ2: The Compression Speed of LOGPRISM

We evaluate LOGPRISM’s efficiency in two configurations:
LOGPRISM, which restricts internal processing to a single
thread per chunk for a fair comparison, and LOGPRISM-
P, which activates our internal fine-grained parallelism. A
critical aspect of this benchmark is the timing methodol-
ogy. We measure the processing time for LOGPRISM (both
configurations) and Denum on a strictly end-to-end basis.
In contrast, for parser-based baselines (LogZip, LogReducer,
LogShrink), we adhere to the conventions established in their
respective papers, which exclude the often time-consuming
parsing and template generation phases. Consequently, LOG-
PRISM’s performance is achieved under a significantly stricter
measurement standard than the parser-based baselines.

Table III presents the experimental results, which reveal
two key conclusions. First, in the direct comparison (single-
threaded internal model), LOGPRISM emerges as the fastest
compressor, outperforming all baselines across all 16 datasets.
With an average speed of 29.87 MB/s, it surpasses the
next fastest competitor, Denum (17.83 MB/s), by 1.68×.
The superior efficiency stems from LOGPRISM’s hierarchical
processing strategy. By efficiently discovering and encoding
frequent “structure + variable” patterns in the second stage, we
drastically reduce the volume of data requiring processing by
the third stage that is more computationally intensive. Second,
the results for LOGPRISM-P validate the significant benefits of
our parallel-aware design. By enabling internal, fine-grained
parallelism, LOGPRISM-P achieves an average speed of 41.55
MB/s, representing a further 39.1% average speedup over the
single-threaded LOGPRISM configuration.

The observed variation in LOGPRISM’s speed across
datasets is primarily driven by dataset size, which dictates

the effectiveness of chunk-level parallelization. For example,
on the small Linux dataset (25,567 lines), the volume is
insufficient to fill even a single 100K-line processing chunk,
precluding the standard multi-threaded acceleration used by
all compressors. Despite this constraint, the standard LOG-
PRISM configuration achieves the best performance (8.55
MB/s) among all baselines. Moreover, LOGPRISM-P provides
substantial additional speedup by leveraging the co-design
of hierarchical redundancy mining and internal fine-grained
parallelism. This ensures high efficiency even in edge cases.
On the Linux dataset, LOGPRISM-P (10.23 MB/s) is signifi-
cantly faster than Denum (4.97 MB/s) because its hierarchical
strategy minimizes the computational overhead, while the
internal worker threads maximize CPU utilization within the
single active chunk.

Summary for RQ2: LOGPRISM achieves state-of-the-art
end-to-end compression speed. This efficiency stems from
the synergistic effect of its hierarchical processing strategy,
which minimizes computational overhead, and its parallel-
aware architecture, which maximizes resource utilization.

D. RQ3: Ablation Analysis of LOGPRISM’s Different Stages

We perform a progressive ablation study to isolate and quan-
tify the contribution of each stage in LOGPRISM’s hierarchical
design. Specifically, we focus on Stage 2 (Variable Subtree
Encoding), which implements our core unified redundancy
encoding paradigm. We evaluate three configurations across all
16 datasets: (1) LZMA, a general-purpose compressor serving
as a universal baseline; (2) LOGPRISM (S1+S3), a structural
baseline that executes Stage 1 and Stage 3 but bypasses
Stage 2, representing an advanced parser-based compressor
that treats structure and variables as separate entities; and (3)
LOGPRISM, the complete model, which is compared against
LOGPRISM (S1+S3) to measure the specific performance
gain provided by mining “structure + variable” correlations.
Both the last two configurations utilize LZMA for the final
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TABLE III
EXPERIMENTAL RESULTS OF COMPRESSION SPEED (MB/S)

Dataset LogZip LogReducer LogShrink Denum LOGPRISM LOGPRISM-P

Implementation Python C++ C++ and Python C++ C++ C++

Android 0.068 19.323 4.123 24.380 31.189 36.672
Apache 0.737 2.347 1.537 6.369 12.002 17.551
BGL 0.874 26.738 2.571 23.575 33.234 50.625
Hadoop 0.901 12.882 4.401 24.453 40.539 52.840
HDFS 0.701 23.598 3.466 25.193 29.281 35.288
HealthApp 0.736 7.937 2.754 17.866 22.239 29.103
HPC 0.644 9.391 3.599 25.216 32.257 37.868
Linux 0.687 1.249 0.941 4.969 8.550 10.228
Mac 0.009 5.450 2.141 6.710 11.715 16.097
OpenSSH 0.715 14.773 3.335 25.572 51.369 70.016
OpenStack 0.537 13.039 4.018 12.352 20.960 29.396
Proxifier 0.716 1.328 0.742 6.000 9.657 10.585
Spark 0.550 21.233 3.185 26.034 42.052 59.005
Thunderbird – 18.656 4.036 19.830 38.539 69.213
Windows 1.357 18.483 6.330 28.783 79.220 116.152
Zookeeper 0.842 4.429 2.280 8.000 15.111 24.192

Average 0.694 12.554 3.091 17.831 29.870 41.552

compression of their output. The results for CR and CS are
detailed in Tables IV and V, respectively.

Compression Ratio Analysis: The results demonstrate a
clear, step-wise improvement in effectiveness. The LOGPRISM
(S1+S3) model is itself a high-performance compressor. By
leveraging the structural analysis of Stage 1 and global sorting
pipeline of Stage 3, it achieves a 2.48× higher average CR
than LZMA. Furthermore, the integration of Stage 2 delivers
a decisive performance boost. The full LOGPRISM model
achieves an additional 8.28% increase in average CR over the
already strong LOGPRISM (S1+S3) variant. This gain is most
prominent on datasets with deep variable correlations, such
as Android (+28.39%) and Thunderbird (+26.70%). Crucially,
the full model consistently outperforms the variant baseline
across all evaluated datasets, ensuring robust improvements
regardless of log characteristics. This validates our unified re-
dundancy encoding design, i.e., by treating variable combina-
tions as part of a compressible pattern rather than independent
values, LOGPRISM unlocks massive redundancy in log data.

Compression Speed Analysis: The ablation study also reveals
the critical role of Stage 2 as a performance accelerator.
Despite adding another analysis step, the full LOGPRISM
model is 25.93% faster on average than the structurally sim-
pler LOGPRISM (S1+S3) variant. This counter-intuitive result
validates our hierarchical redundancy mining strategy. In the
LOGPRISM (S1+S3) configuration, every variable identified
in Stage 1 must be processed by Stage 3, which relies on
computationally expensive regex templatization. In contrast,
the full LOGPRISM model only supplies Stage 3 with a smaller
set of “true long-tail residuals.” By handling the majority of
high-frequency variables in the efficient Stage 2, LOGPRISM
drastically reduces the workload of the most time-consuming
part of the pipeline, thereby lowering overall computational
overhead and increasing throughput.

TABLE IV
ABLATION STUDY OF COMPRESSION RATIO

Dataset LZMA LOGPRISM (S1+S3) LOGPRISM

Android 18.857 25.564 32.822
Apache 25.186 61.887 64.330
BGL 17.637 46.548 47.145
Hadoop 36.095 75.170 79.733
HDFS 13.559 24.282 26.466
HealthApp 13.431 46.932 50.477
HPC 15.076 43.880 45.447
Linux 16.677 37.356 38.343
Mac 22.159 37.373 44.992
OpenSSH 18.918 95.969 113.327
OpenStack 14.437 21.868 23.356
Proxifier 18.982 26.664 29.849
Spark 19.908 50.656 54.813
Thunderbird 27.309 59.876 75.862
Windows 202.568 490.787 497.298
Zookeeper 27.667 118.531 143.742

Summary for RQ3: The ablation study confirms that LOG-
PRISM’s performance breakthrough is driven by its hierar-
chical design. While Stages 1 and 3 provide a solid structural
baseline, the core innovation (i.e., Stage 2 Variable Subtree
Encoding) delivers a decisive performance boost to both
compression ratio and speed.

E. RQ4: Robustness Analysis: The Impact of Data Granularity

This question investigate the impact of data granularity
on LOGPRISM’s performance, which is a critical operational
parameter. Our primary experiments utilized a fixed chunk
size of 100K lines, a standard baseline setting that maximizes
parallelism but limits pattern discovery to local windows. This
design involves an inherent trade-off: each chunk builds an
independent URT, preventing the sharing of patterns across
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TABLE V
ABLATION STUDY OF COMPRESSION SPEED (MB/S)

Dataset LZMA LOGPRISM (S1+S3) LOGPRISM

Android 24.876 26.717 36.672
Apache 7.665 13.453 17.551
BGL 16.108 49.072 50.625
Hadoop 22.102 44.937 52.840
HDFS 15.715 31.145 35.288
HealthApp 9.436 23.156 29.103
HPC 11.700 33.401 37.868
Linux 4.592 8.818 10.228
Mac 8.428 12.950 16.097
OpenSSH 15.873 46.553 70.016
OpenStack 11.647 20.578 29.396
Proxifier 6.696 8.750 10.585
Spark 20.757 50.734 59.005
Thunderbird 26.845 51.360 69.213
Windows 63.706 91.402 116.152
Zookeeper 6.581 14.907 24.192

Average 17.045 32.996 41.552

the full dataset. This can potentially obscure very long-range
redundancies. To explore this speed-vs-compression trade-off,
we configure LOGPRISM to operate in single-archive (non-
chunked) mode, allowing it to construct a single global URT
over the entire dataset. We compare this configuration against
Denum, the leading state-of-the-art baseline that also supports
global operation. The results, presented in Table VI, demon-
strate that global pattern discovery significantly boosts LOG-
PRISM’s compression effectiveness while maintaining highly
competitive speeds.
Compression Ratio Analysis: In single-archive mode, LOG-
PRISM achieves a 273.27% increase in average CR over its
own chunked performance, with the gain on the Windows
dataset reaching a massive 739.37%. When compared to
Denum operating in the same global configuration, LOGPRISM
outperforms it on 13 of the 16 datasets. The improvements
are particularly significant on complex logs such as Win-
dows (+22.49%) and Thunderbird (+21.29%). On two of
the remaining three datasets (Hadoop, HDFS), LOGPRISM
remains highly competitive, following Denum with a small
difference of less than 2.50%. The only notable exception
is the Spark dataset, where Denum’s specialized handling of
specific numeric sequences proves more efficient. Overall,
these results validate that LOGPRISM scales effectively to
leverage global context to achieve superior compression.
Compression Speed Analysis: LOGPRISM maintains an ab-
solute speed advantage even when building a single global
model, whose average speed of 15.77 MB/s is 2.62× faster
than Denum (6.01 MB/s). This sustained high performance
is attributable to LOGPRISM’s hybrid parallel architecture.
While standard chunk-based compressors (like Denum) lose
parallelism when processing a single global block, LOGPRISM
retains fine-grained concurrency: the pre-processing of logs
in Stage 1 and the subtree construction for distinct structural
groups in Stage 2 continue to execute in parallel. Furthermore,
the architectural benefit identified in RQ3, where Stage 2
acts as a high-throughput filter to reduce the workload of

TABLE VI
ROBUSTNESS ANALYSIS OF SINGLE-ARCHIVE MODE PERFORMANCE

Dataset Compression Ratio Speed (MB/s)

Denum LOGPRISM Denum LOGPRISM

Android 46.191 52.429 5.416 15.294
Apache 58.562 64.269 5.810 12.369
BGL 44.284 47.429 6.100 16.345
Hadoop 92.899 90.590 8.643 27.186
HDFS 32.919 32.198 5.230 7.956
HealthApp 47.279 53.574 7.072 12.728
HPC 45.542 46.350 6.369 16.276
Linux 30.688 38.216 4.582 8.456
Mac 43.633 50.266 5.245 11.171
OpenSSH 106.984 120.116 7.426 27.962
OpenStack 21.898 23.394 5.129 12.576
Proxifier 27.141 29.739 5.484 9.894
Spark 65.125 56.196 5.398 13.237
Thunderbird 70.161 85.097 4.263 15.900
Windows 3407.766 4174.176 6.421 26.897
Zookeeper 135.846 142.290 7.556 18.013

Average 267.307 319.146 6.009 15.766

Stage 3, remains fully effective. Particularly, even in this
globally optimized mode, LOGPRISM remains significantly
faster than the default chunked configurations of LogReducer
(12.55 MB/s) and LogShrink (3.09 MB/s).

Summary for RQ4: LOGPRISM’s design offers both robust-
ness and flexibility, providing users with a clear speed-vs-
compression trade-off: the default chunked mode maximizes
speed, while the single-archive mode maximizes the com-
pression ratio at a reasonable efficiency cost. In both op-
erational paradigms, LOGPRISM’s performance advantages
significantly surpass baseline models.

V. RELATED WORK

This section discusses the landscape of compression tech-
niques relevant to log data, organized by their foundational
design philosophies.

A. General-purpose Compression Approaches
These algorithms eliminate statistical redundancy in data

for compression, which can be categorized into three primary
families. Dictionary-based approaches, exemplified by LZMA,
achieve compression by replacing repeated byte sequences
with references to a dictionary. Prediction-based methods, such
as PPMd, leverage statistical models to encode characters
based on their preceding context. Block-sorting algorithms,
notably bzip2, utilize the Burrows-Wheeler Transform to clus-
ter similar characters, thereby enhancing subsequent encoding
efficiency. While these methods exhibit strong performance on
generic text data, they fundamentally operate on undifferenti-
ated byte streams without awareness of log structure. Con-
sequently, their effectiveness diminishes significantly when
confronted with logs containing high-entropy variables such
as unique request IDs and dynamic numerical values, as they
cannot exploit the inherent semi-structured redundancy that
spans log entries.
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B. Log-specific Compression Approaches

The dominant methodology in log compression is the
parser-based paradigm [14], [24]–[26], [41], which decouples
structure extraction from variable encoding. LogZip estab-
lished this framework by combining the Drain parser with iter-
ative clustering. Subsequent works focused on optimizing the
separated components: LogReducer introduced delta encoding
for timestamps, while LogShrink utilized entropy-based analy-
sis to identify variable patterns. Additionally, systems like CLP
and LogGrep have extended this paradigm to enable direct
search on compressed data. To avoid the overhead of explicit
template extraction, alternative approaches have emerged.
Early works, such as LogArchive [45] and MLC [46], applied
similarity grouping or block-level deduplication to compress
logs. More recently, the number-centric paradigm, exemplified
by Denum [27], performs a global binary classification to split
tokens into numeric and non-numeric streams.

However, state-of-the-art methods share a fundamental
limitation: the reliance on early, rigid token categorization.
Parser-based methods separate templates from variables, while
number-centric methods separate numerics from strings. This
irreversible decoupling destroys contextual correlations that
span these boundaries. Instead, LOGPRISM unifies struc-
tural extraction and pattern encoding to mine deep “struc-
ture+variable” redundancies that existing methods ignore.

VI. CONCLUSION

This paper reevaluates the prevailing “parse-then-compress”
paradigm in log storage, identifying the rigid decoupling
of structure extraction and data encoding as a fundamental
bottleneck. Our empirical analysis confirms that high parsing
accuracy does not guarantee compression efficiency. Instead,
it often obscures deep “template-variable” and inter-variable
correlations essential for maximizing storage density. To ad-
dress this limitation, we introduce LOGPRISM, a framework
that resolves this misalignment through Unified Redundancy
Encoding. By dynamically modeling log structure and variable
patterns within a Unified Redundancy Tree (URT), LOG-
PRISM effectively bridges the gap between static templates and
dynamic parameters. Leveraging a hierarchical redundancy
mining strategy and fine-grained parallelism, our approach si-
multaneously optimizes for compression ratio and throughput.
Extensive evaluations on 16 benchmark datasets demonstrate
that LOGPRISM establishes a new state-of-the-art. It achieves
the highest compression ratio on 14 datasets, outperforming
existing baselines by 6.12%∼83.34%, while delivering the
fastest processing speeds (1.68×∼43.04× faster than competi-
tors). Furthermore, in single-archive mode, LOGPRISM boosts
compression by 273.27%, outperforming Denum by 19.39%
with a 2.62× speed advantage. These findings demonstrate that
co-designing parsing and compression is critical for unlocking
the full potential of log data reduction in large-scale systems.

DATA AVAILABILITY

The source code of LOGPRISM is publicly available on
https://github.com/Lycc42/LogPrism.
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